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FOREWORD

The Quarterly Reliability Status Report is

submitted in accordance with the Apollo documenta-
. tion requirements delineated in NASA contract

NAS9-150, Paragraph 4.5.4.,7 of '"Project Apollo

Spacecraft Development Statement of Work'", Part 4,

dated 18 December 1961, and MIL-R-27542, Paragraph

5.4.3. The information contained herein covers the

period from 1 April through 30 June 1962,
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INTRODUCTION

This document is a continuation of the Reliability
Status Report for the Apollo Project as reported in the
First Quarterly Reliability Status Report, (S&ID
62-557-1). Significant accomplishments made from 1
April through 30 June are delineated in Section I;
planned activities through 30 September 1962 are
outlined in Section II.
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1. STUDIES, DESIGN ANALYSES, AND REVIEWS

APOLLO SPACECRAFT RELIABILITY STUDIES

A series of studies was performed during this quarter at the request of
MSC, to evaluate the reliability requirements established by NASA for the
Apollo Spacecraft, The need for such a study partially resulted in MIT's
statement that the apportioned requirement could only be met with consider-
able redundancy and in-flight maintenance. To date, the study has consisted
of comparing the Apollo requirements to those for comparable systems and
determining what would be required to meet the reliability requirements of
the electronic subsystems,

The subsystems considered were those which contribute to the guidance
and control functions of the spacecraft. These include the guidance and
navigation (G&N) subsystem, the stabilization and control (S&C) subsystem,
the deep space information facility (DSIF), and the telecommunications
subsystem. The results of these studies were presented at the following
meetings with NASA. '

Joint meeting with NASA and MIT at Downey, California, on
18 April 1962

Joint meeting with NASA and MIT at Houston, Texas, from
1 May to 10 May 1962

Meeting with NASA at Houston, Texas, on 13 July 1962.

A summary of the S&ID studies is presented in Table 1. Table 2
presents the results of a comparison of Apollo reliability objectives with
those of other manned systems. From these studies, it was concluded that
the reliability objectives are reasonable, A paper analysis predicts that
they can be met for the electronic subsystems. The results presented by
MIT on 1 May 1962 partially agree with this conclusion. They indicated that
the G&N subsystem requirement could be met with a degree of in-flight
maintenance to be specifically defined at a later date.

The reliability estimates of Table 1 consider, in the first part, the
levels of subsystem mission success reliability that can be achieved with
unimproved parts and with high-reliability {Minuteman) paris. Here mission
‘ success is defined as the probability of completing the lunar landing and
! . returning to earth with no unrepairable failure in the system noted.

"3 SRR
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Table 2. Reliability Comparison of Flight Vehicles

Single Mission Two-Week Period
Vehicle Mission Crew Mission Crew
Success Safety Success Safety Missions

Apollo 0.90 0.999 0. 90 0.999 1
X-15 (1/2 hour flight) - 0.999 - 0.9992 0.77
F-100 (1-1/2 hour flight) - 0.9996% - 0.998 6
B-70 0. 85 0. 9995 0. 56 0.998 3.6
Bomber (8.9 hour flight) - 0.9999% - 0.9998%* 1.8
*Field experience

"Unimproved parts'' reliability is based on Polaris data supplied by MIT.

A typical component mean-time-between-failures (MTBF) is 1400 hours for
the inertial measuring unit (IMU). The Minuteman parts are based on the
interim Minuteman reliability objective of 7000 hours MTBF for the system,
equivalent to an IMU MTBF of 16, 700 hours.

The use of high-reliability parts includes the proper handling and quality
control of these parts and the electronic and mechanical stress-analysis
techniques employed during Minuteman development. The times employed
for the navigation and guidance subsystem were supplied by MIT and were
about 25 percent of the mission time. The other systems operated throughout
the mission.

These results indicate that only with the high-reliability parts can the
G&N subsystem meet its requirements, but that even with these parts, the
S&C and telecommunications subsystems are short of the goal and require
other approaches for achieving the desired reliability objectives.

The data in the lower third of Table 1 expresses the consideration that
for mission success everything must operate on the way to the moon but that
failures may occur on the way home. For crew safety it considers thata
successful abort may be achieved with failures. This definition dictates the
inclusion of various backup modes: man, to control the spacecraft through

SONEDENI-—
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reaction controls in the event of an S&C subsystem failure, the inertial
reference package (IRP) in the S&C subsystem to back up the IRP in the G&N
subsystem, and the DSIF to back up the G&N computer.

Based on the criteria stated above, ''crew safety' includes the mission
success reliability plus the probability of a successful abort.

The results show that meeting mission success and crew safety
requirements are predicated upon high reliability in all electronic subsystems,
including the G&N. It is felt that in actual practice the high-reliability parts
cannot be used in total but that lack of availability of such parts can be
compensated for by the use of low-level redundancy and some in-flight
maintenance.

Table 2 compares the Apollo requirements with those of the X-15,
F-100 fighter, B-70 bomber, and to the highly developed B-47 and B-52
bombers. The numbers for the Apollo, X-15, and B-70 are theoretical
requirements; for the other vehicles, they are results of field experience.
The numbers, in view of the Apollo 14-day mission requirements, are given
for a single mission and for a two-week period. The last column gives the
number of missions normally flown during that period. The results indicate
that the Apollo requirements are reasonable.

NASA RECOMMENDED SEQUENCER

A preliminary evaluation of the NASA-recommended design for Apollo
propulsion system sequencer is complete. Rocketdyne experience with the
Thor and Atlas sequencers, which utilize relays, demanded that solid-state
devices be used for the Saturn S-II. Although the vibration and thermal
stresses encountered by the S-II unit are greater than Apollo stresses, the
higher reliability requirements for Apollo indicate that S&ID should employ
solid-state devices on Apollo.

LAUNCH ESCAPE SUBSYSTEM

This section describes Reliability Engineering's launch-escape-
subsystem activity during the period April through June. Primary emphasis
was placed on the thrust vector control (TVC) nozzle subsystem of the launch
escape motor and on the review of subcontractor documentation in order to
establish a definitive reliability program. Redirection, involving the
elimination of the TVC system, has resulted in a new apportionment of
reliability goals for the subsystem. Emphasis during the next report period
will be placed on redefining the launch escape subsystem reliability require-
ments resulting from the addition of a pitch control motor.

~ONESNNI
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. Reliability Apportionment

The reliability apportionment of the rocket motors comprising the
launch escape subsystem is as follows:

Tower Jettison Motor

The reliability requirement of 0. 99995 for the rocket motor has been
apportioned for the major portions of the rocket motor as follows:

Reliability - -
Allowed failures per million
Motor Parts motors
Squib Initiators 1
Pyrogen Igniters 3
Case 1
Insulation 1
Propellant 1
Fixed Nozzles (2) 43
‘ Reliability of Motor = 0. 99995

Launch Escape Motor

The following is a listing of launch escape motor component reliability

apportionments:
Reliability - -
Allowed failures per million
Component motors
EBW (2) 1000
Pyrogen Igniter 100
Propellent 500
Liner 10
Case 100
Nozzle (4) 100
Total Motor 1112

<DONHBENIE
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Pitch Control Motor

The following is a listing of pitch control motor component reliability

apportionments:
Reliability - -
Allowed failures per million
Component motors
EBW (2) 1000
Pyrogen Igniter 10
Propellent 500
Liner 100
Case 160
Nozzle 100
Total Motor 811

Tower Jettison Motor

Reliability personnel attended a design review held at Thiokol in
Elkton, Maryland on June 7 and 8. Of interest to Reliability Engineering was
the review of motor case drawings and discussions held on the case configura-
tion. Welding has been eliminated by employing a deep dish forging, and
bolting the aft closure in place. The attachment structure is an integral part
of the motor case and aft closure. Also, Thiokol was given approval by S&ID
to conduct vibration tests, during development, without nozzles or interstage
structure.

Review of the drawings and applicable specifications for the igniter
assembly, nozzle assembly, and case has been completed. No significant
problem areas were found. The major portion of the review activity, such
review of processing and inspection procedures, probably will be completed
during the next quarter

Failure-Mode Analysis
A preliminary failure mode analysis has been completed. The results

of this analysis are summarized in Table 3. It is expected that a detailed
analysis will be completed during the next quarter.

Logic Diagram

Figure 1 is the reliability logic diagram of a normal-mission tower
jettison. As shown in this diagram, the launch escape motor is redundant

-8 -
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Table 3., Tower Jettison Motor Preliminary Failure-Mode Analysis
Subsystem Component Dominant Failure Mode Control or Verification
Ignition EBW Open or shorted bridge 100 percent resistance check
wire in detail and system
inspection
Pyrogen Case burst 100 percent hydro proof test
Cracked propellant 100 percent X-ray of grain
Fuel Solid Cracked propellant 100 percent X-ray of grain
Propellant -
Performance Batch control testing
Pressure| Case Rupture due to wrong Material certification
Vessel material Process certification
Headcap aft Improper heat treat 100 percent hydro proof test
bulkhead
Development hydro burst
Insulation Burn-through due to 100 percent X-ray
’ cracks and voids 100 percent in-process
inspection
Material certification and
verification
Motor assembly | Pressure leakage due 100 percent pressure leak
to missing parts, poor test after assembly
seals, etc.
Fixed Nozzle insert Cracks due to shock or Development and qualifica-
Nozzles vibration tion test
Excessive erosion due 100 percent inspection
to use of wrong before and after assembly
material Material certification,
verification, parts identi~-
fication, and bonded
storeroom controls
Nozzle closure Pressure leakage 100 percent leak test
Expansion cone Cracks and voids 100 percent X-ray
Excessive erosion due 100 percent in-process
to wrong material controls
Material certification and
verification

SID 62-557-2
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to the tower jettison motor. During tower jettison the pitch control motor
remains inoperative.

Launch Escape Motor

Failure-Mode Analyses

During the period covered by this report, failure analyses were
completed on all major components. These analyses are shown in Tables 4,
5, and 6.

Table 4 presents the motor case failure-mode analysis. Major
emphasis must be placed on material selection, inspection, and quality
control in order to maintain the desired reliability.

The failure-mode analysis of the igniter is shown in Table 5.
Reliability may be achieved if careful preflight inspections of electrical
circuits are performed. Placing an age limit on stored igniters would
contribute to the achievement of reliability.

Table 6 shows the grain failure-mode analysis. Reliability is presented
as being proportional to the degree of visual inspection; therefore, good
quality control and inspection are mandatory.

Logic Diagram

A reliability logic diagram of the launch abort mode is shown in
Figure 2. As indicated, a successful abort requires that the launch escape
motor and the tower jettison motor function correctly. It is significant to

note that a failure of the pitch control motor does not preclude crew safety.

Escape Tower Release

The reliability of two methods of releasing the escape tower was
evaluated. Figures 3 and 4 show the two methods and list advantages and
disadvantages.

Both methods are acceptable in view of the fact that System A has
a reliability of 0. 999999 and System B has 0. 999996.

Based on the advantages and disadvantages shown in Figures 3 and 4,
a decision was reached in favor of the cable-release system.

- 11 -
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1100-POUND RIGLOAD
ESCAPE
TOWER
COMMAND
MODULE —~—_
TURNBUCKLES . —
" |
| i
RELEASE
MECHANISM
CABLE CHOPPERS

COMMAND MODULE

Advantages Disadvantages
Tower is released by either Inadvertent firing releases
. Pyro Cable Chopper. tower from command module;
however, the possibility of
No chance of mechanism being this happening is very slight.

jammed by flying debris.

Simultaneous release of all four
legs from one location.

Figure 3. Escape Tower Release Mechanism, System A - Cable Release ‘
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EXPLOSIVE
NUT

COMMAND MODULE

Advantages Disadvantages
Inadvertent firing of one Requires four times as many pyrotechnic
nut would not release devices as cable release system.

the tower, only one leg.
s oy s Requires weight and complexity of

8 EBW firing units and associated

Either explosive nut could o
wiring .

release one leg.

One or the other of the explosive
nuts would have to work successfully
on all four legs in order to release
the tower,

In case one leg released inadvertently
there is no assurance that the three
remaining legs could support the command
module in case of an abort.

Chance of jammed mechanism by flying

debris,
Nonsimultaneous release of all four
legs.
‘ Figure 4. Escape Tower Release Mechanism, System B

- Explosive Nut System
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Thrust Vector Control (TVC) Design Analysis ‘

Prior to the elimination of TVC, a thorough analysis of the movable
nozzle versus fluid injection was completed. Fluid injection and movable
nozzles were compared on the basis of reliability allocations. A generic
failure rate was assigned each component through use of data from Earles!.
The same rate was used for similar components in both systems. Only
critical components, as shown in Table 7, were used for the analysis.

Table 7. Launch Escape Motor Criticality Analysis

Mission Mode
Condition Abort Mode (non-abort)

If Malfunction Is Caught Minor* Minor¥*
in Prelaunch Checkout

If Malfunction Occurs Critical* or Major* or
After Launch major minor
*NOTE

Critical: A reliability degrading failure with ramifications
in crew safety

Major: A reliability degrading failure which will influence
accomplishment of the mission and mission
objectives

Minor: A failure with no ramifications in mission success

or crew safety; one which influences the basic
integrity of the equipment and constitutes a
nuisance value or maintenance incident

Mean-time-to~failure was calculated for current time and for six-month
and 12-month elapsed times. K factors (a function of application, environment,
etc.) were assigned, based on engineering judgment and past experience.

Once again the same factors were used for similar components in both

1
Reference 3 ‘
- 18 - .
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‘ systems. A comparison of Table 8, dealing with fluid injection TVC, and
Table 9, dealing with movable nozzle TVC, indicates the advantage of the
movable nozzle system.

The relative importance of the movable nozzle in enhancing or
degrading the reliability of the over-all system is also indicated. Tables 8
and 9 indicate that there is no degradation of reliability for the movable
nozzle even with reliability of a lower order of magnitude. It is noted that
for short burning times, at least, the generic reliability of the movable
nozzle should be of the same order of magnitude as that of the fixed nozzle.

Table 10, showing operation and logistics mode criteria, was compiled
to indicate the various induced environments to which the TVC components
would be exposed.

Reliability Prediction of TVC Configurations
Reliability predictions of thrust vector control configurations, utilizing

the information shown in Figure 5, (Ligquid Injection and Swivel Nozzle Logic
Diagram) and Table 11, (Component Failure Rates), yielded the following

results:
' System Rating (Numerical Results)
Secondary injection (on-off, 2-nozzle control) 0.9953
Swivel nozzle (2-nozzle control) 0.9890
Secondary injection (2-nozzle proportional control) 0.9888
Swivel nozzle (4-nozzle control) 0.9803
Secondary injection (4-nozzle proportional control) 0.9692

The criteria for establishing the TVC predictions are as follows:
All four nozzles must operate.
The operating time during the mission is 10 minutes.
The environmental factor (k) is equal to 1, 000.

Standard failure rate data were used in predicting the system
reliability. !

1
. Reference 4
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Table 10. \ Launch Escape Motor
Operational and Logistics Modes Criteria - Movable Nozzle

Handling )
Storage and Functional
Itemn (5 years) Assembly Transport Prelaunch Abort Nonabort
Leak, Ease of Package for Ease of
. corrosion, assembly rough replacement
NZ Fill Fitting contamination handling, clean * *
natural replace
environment
Corrosion, Ease of Package for Ease of Pressure Must not
creep, assembly rough replacement and blow
Reservoir stress handling, clean leak
natural replacement integrity
environment
Chemical Sharp edges Package for Pressure Pressure
stability, ease of rough integrity and
Bladder tejmper‘ature assembly handling, ¥eak . %eak . ®
dimensional natural integrity integrity
stability and environment
collapses
Leak, Ease of Package for Ease of
corrosion, assembly rough replacement
0il Fill Fitting contamination handling, clean * #*
natural replace
environment
Leak, Easy Package for Accuracy
corrosion, installation rough
Qil Pressure contamination handling, * *
Sensor natural
environment
Corrosion, Safety, leak Package for Ease of Must
temperature integrity, rough replacement function
Check Valve humidity, electrical handling, *
electrical continuity natural
continuity environment
Leak, Ease of Package for Ease of
corrosion, assembly rough replacement
GSE Connect contamination handling, clean * *
natural replace
environment
Corrosion, Easy, leak Package for No leaks Functions
contamination integrity, rough at without
Filter foolproof handling, connection leaks *
natural
environment
Dust, dirt, Ease of Package for Ease of Functions
oil, assembly rough replacement as
Servo Valve corrosion, polarity handling, designed *
leak natural
environment
Corrosion, Ease of Package for Ease of Functions
creep assembly rough replacement as
Actuator residual polarity handling, designed *
stress natural
environment

*Does not apply

- 22 -
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Table 11. Thrust Vector Control Methods Component-Failure Rates
Liquid Injection Swivel Nozzle
Components Reliability* Components Reliability*

N‘2 fill valve 110 N2 fill valve 110
Plug 10 Plug 10
Freon valve 140 Pressure valve 50
Squib 10 Hyd. fill 110
Restriction orifice 10 Hydraulic valve 140
Relief valve 90 Squib 100
Freon torus 10 Filter 5
N2 torus 10 Servo valve 140
Freon bladder 50 Actuator 200
Disconnect 110 Dump valve 50
Filter 5 Swivel nozzle 50
Servo valve 140
Injection valve 140
Nozzle 10
On-off valve 100
*The component reliability figures, expressed as allowed failures per

10° assemblies, were arrived at from failure rate data contained in

References 3, 6, and 10.

- 25 -
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TVC Stabilization and Control Subsystem Reliability Apportionment .

This Apportionment (Figure 6) was made with the assumption of a
booster reliability of 95 percent, as indicated by NASA in the Apollo Work
Statement. 1

STABILIZATION RELIABILITY = 0.995

AND CONTROL CREW SAFETY = 0.9999
STABILIZATION AND STABILIZATION AND STABILIZATION AND
cONTOL CONTROL STABILIZATION AND N
REACTION CONTROL SYSTEM REACTION CONTROL SYSTEM CONTROL LAUNCH ESCAPE
COMMAND MODULE SERVICE MODULE PROPULSION THRUST VECTOR CONTROL

First=stage booster reliability (RI ) 0.983
Second-~stage boaster reliability for 10-second operation (R2) 0.995
RI x R2 =0.978

Figure 6. TVC Stabilization and Control Subsystem Block Diagram

The predicted booster failure rate is 22 booster failures per thousand
missions. This representative quotient indicates that the launch escape system
electronics, will be required to operate 22 times per thousand missions.

From the apportioned crew safety of 0.1 fatalities per thousand
missions for the entire stabilization and control system, 0.0l fatalities per
thousand missions have been apportioned to launch escape TVC electronics.

1Reference 5

S 2b- Sohnakiikis

SID 62~557-2




/7
NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

. Using the preceding values, the reliability goal for launch escape
electronics was established as follows:

1,000 missions % 0. 01 fatalities _ 0.0l fatalities
22 aborts 1,000 missions 22 aborts
or
0. 01 .
R =1 - 5 - 0. 9955 - 4.5 failures per thousand aborts.

In order to enhance crew safety, the following criterion has been
established for the launch escape electronics:

4. 05 failures per thousand aborts of the allowable 4.5 failures per
thousand aborts are to be fail-safe in a neutral position.

Escape Rocket Case

Reliability tests of the escape rocket case subsystem are based on a
modification of Lusser's principles. A reliability boundary has been
established, based on pressure data from the Mercury escape program.

A proof pressure test is specified at a considerably higher pressure than the
‘ limit load. For the Apollo launch escape rocket the proof pressure is a
minimum of 10 sigma over the mean limit load.

The numerical definition of the minimum safety margin for the launch
escape rocket is illustrated in Figure 7. The reliability boundary or limit
load is converted to an equivalent pressure so that it can be correlated with
the 100 percent proof pressure requirements for the case. The reliability
boundary pressure is the summation of the equivalent pressures from the
external bending stress, the hoop stress, and standard deviation of pressure
(for batch-to-batch variation) based on previous test work. The case pressure
test of 2440 psi will screen out all substrength cases due to design,
manufacturing, or material discrepancies. The safety margin is defined as
the number of standard deviations of pressure between the reliability
boundary and the proof test. The maximum pressure from each of the 28
qualification-reliability tests will be plotted on this chart to demonstrate
the actual reliability achieved. In addition to the 28 qualification-reliability
tests, some motors from the development program and tests performed by
NAA will be used to demonstrate reliability.

Propellant-Ignition Subsystem

Reliability demonstration of the propellant ignition subsystem will
. consist of 28 qualification-reliability static firing tests. Propellant

| - 27 - catsasum
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EQUIVALENT PRESSURE (PSI)

3500 1
THEORETICAL BURST
|I
|
2500 | PROOF PRESSURE
2000
RELIABILITY LIMIT
(30 BAND)
HOOP LOAD
1500
1000
500
75 EXTERNAL BENDING
0
LOW AMBIENT HIGH
(20) (70) (140)
TEMPERATURE (F)
Figure 7. Launch Escape Motor Safety Margin Demonstration .
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ingredients will be subject to chemical, ballistic, and physical property tests
on each lot of raw material and on each batch of propellant to determine
whether the batch meets the requirements of the Apollo specification. Each
finished grain will be subjected to radiographic and visual inspections.
Grains which exhibit voids, cracks, or surface defects which could affect
the performance of the Apollo launch escape motor will be rejected. Only
those motors which meet the stringent quality control requirements will be
acceptable for use during this program. These procedures will be continued
on subsequent production articles to ascertain that future manufacture of
rocket motors will meet the extremely high reliability requirements of the
motors manufactured for the development program.

ENVIRONMENTAL CONTROL SUBSYSTEM (ECS)

A preliminary analysis of the environmental control subsystem (ECS)
has been completed with logic diagrams depicting the series parallel relation-
ship of ECS components and modes of operations with respect to successful
and safe performance. The evaluations of failure modes and effects on failure
rates of each component forms an integral part of this reliability analysis.,

Flight Module Apportionment

The ECS apportionment contained in Table 12, represents a first order
analysis of the subject system based upon the following assumptions.

The logic diagrams in figures 8 through 14 have been modified such
that (1) no redundancy is considered; (2) normal operation and normal
conditions are assumed (no crew safety operation or emergency conditions});
(3) manual overrides are not separated, the reliability of the crew properly
performing the required operation is assumed to be one; and (4) only space
operation is considered.

Also these additional assumptions apply: a 400-hour mission time with a

a reliability of 0. 9935 is assumed. The accessibility index is assumed to
be one, since no maintenance is permitted. The failure rate assigned to
each component includes the associated joints or fittings required to install
or mount that component. The failure rates listed and associated MTBF's
include the integrated environmental effects for the total mission time
(these are not generic failure rates).

Ground Support Equipment Apportionment, Water-Glycol Unit

The analysis (Table 13) of the components for the Water-Glycol Unit
(GSE) is based upon relative complexity factors. The resultant failure
rates, equivalent MTBF's, and equivalent cycles per component are the

ze
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(First Order Analysis)

Preliminary Apollo ECS Reliability Apportionment

SID 62-557-2

Equivalent
Mean Time
Failure Between
Equivalent Rate Failures Assumed

Part Series Percent A | (*Million Equivalent Usage
No. Item Description Quantity (1000 hrs) hours) Cycles (Cy/hr)
a% Suit/Cabin Air Circuit
1.1 Valve, check, raspberry, N/C 2 0. 0025 39.7
1.2 Heat exchanger, air/air regen. X flow 1 0.0008 119
1.3 Valve, check, dual, butterfly, N/C 1 0. 0067 14.9 © 298,000 |1/50 hrs
1.4 Valve, limiting and manual shutoff, N/O 4 0. 0042 24
1.5 Connector, N/O 3 0. 0008 119
1.6 Valve, check, flapper, N/C 4 0. 0067 14.9
1.7 Connector; orifice, N/C 3 0. 0050 19.8
1.8 Debris trap, screen filter 1 0. 0008 119
1.9 Catalytic filter 1 0. 0050 19. 8
1.10 | Compressor, centrif., 10K rpm 1 0. 0462 2.16
1.11 | Valve, check, raspberry, N/C 3 0. 0025 39.7
1.12 | Valve, manual shutoff, N/O 1 0. 0042 24 2,000, 000 1/12 hrs
1.13 } Valve, check, raspberry, N/C 1 0. 0025 39.7 3, 310 1/12 hrs
1.15} CO, and odor adsorber 1 0. 0034 29.8
1.16 | Valve, pressure relief w/man.ovr'd. N/C 1 0. 0126 7.93
1.17| Switch, rotary, four-position assembly 1 0. 0084 11.9 298, 000 1/400hrs
1.18 | Valve, electr. act. contr. w/man. ovr'd. 1 0. 0420 2. 38
1.19 | Heat exchanger; glycol/air; X flow 1 0. 0008 119
1. 20 | Heat exchanger, water/air X flow 1 0. 0008 119
1.21 | Valve, diverter, manual 1 0. 0042 24
1.22 | Water separator (w/shutoff valve & actu.) 1 0. 0840 1.19 2,380, 000 2/hr{act)
1. 24 | Temperature control, magnetic amplifier 1 0.0336 2.98
1.25| Temperature selector, rheostat 1 0. 0067 14.9
1.28 | Temperature control, magnetic amplifier 1 0.0336 2.98
5.5 Valve, elect. act. contr. w/man. ovr'd, 1 0. 0420 2. 38
5.13 | Valve, check, quad.assembly, N/O 2 0. 0084 11.9 23,800, 000 2/hr.
7.1 Sensor, air pressure B s %*
7.3 }|’Sensor, air temperature 1 0. 0042 24
7.6 Sensor, pressure differential e P s
7.7 Sensor, pressure differential % % e
7.9 Sensor, air temperature s % %
7.10{ Sensor, voltage indication % % %
7.11 | Sensor, air temperature 1 0. 0042 24
a* Reference Figure 8
b Water - Glycol Circuit
2.1 Valve, check, ball, N/C 4 0. 0042 24
2.2 Valve, relief, ball, N/C 1 0. 0084 11.9
2.3 Disconn., self-sealing (2 conn.) {2) 0. 0084 11.9 24, 000 1/500hrs
2.4 Valve, manual shutoff, N/O 3 0. 0042 24 240, 000 1/100hrs
2.5 Valve, check, ball, N/O 2 0. 0042 24
2.6 Heat exchanger, water - glycol, X flow 1 0. 0008 119
2.7 Reservoir, glycol, spring op. 1 0.0017 59.5
2.8 Valve, manual shutoff, N/O 1 0.0042 24
2.9 Valve, manual shutoff, N/O 1 0. 0042 24
2.10] Valve, electr. act. contr., N/O 1 0.0378 2. 64
2.12| Temperature control, magnetic amplifier 1 0.0336 2.98
2.13| valve, dual electr. act. contr. w/manual

override 1 0.0758 1.32
2.14| Valve, check, ball, N/C 3 0. 0042 24
2.15| Pump, glycol, gear, 6Krpm 1 0. 0420 2.38
2.16| Switch, rotary, 4 position assembly 1 0. 0084 11.9
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Table 12.

SPACE and INFORMATION SYSTEMS DIVISION

(First Order Analysis) (Continued)

Preliminary Apollo ECS Reliability Apportionment

Equivalent
Mean Time

Failure Between
Equivalent Rate Failures Assumed
Part Series Percent A | (*Million Equivalent Usage
No. Item Description Quantity (1000 hrs) hours) Cycles (Cy/hr)
b Water - Glycol Circuit (Continued)
2.19/
5.6 Valve, dual, elect. act. contr. w/manual
override (1) 0.0758 1.32
2.20 | Valve, electr. act. contr. N/C 4 0.0378 2. 64
2.22 | Temperature control, magnetic amplifier 1 0. 0336 2.98
2.24 | Disconn., self-sealing, assembly 1 0. 0084 1.9
3.5 Temperature selector, rheostat 1 0. 0067 14.9
3.7 Temperature, contr., mag. amp. 1 0.0336 2.98
8.6 Sensor, glycol temperature 1 0. 0042 24
8.9 Sensor, glycol temperature 1 0. 0042 24
9.5 Sensor, air temperature 1 0. 0042 24
9.6 Sensor, air temperature 1 0. 0042 24
b Reference Figure 9
c Pressure and Temperature Control System
3.1 Valve, dual regulator and relief, manual
override 1 0. 0252 3.97
3.2 Heat exchanger, air/glycol, X flow 1 0.0008 119
3.9 Snorkel, inflow (required to operate post-
landing only) %* e s
3.10 | Valve, manual shutoff, N/C 1 0. 0042 24
3.12 | Valve, manual shutoff, N/C 1 0. 0042 24
3.14 | Valve, diverter, manual 1 0. 0017 59.5
3.17 | Switch, rotary, 3 position, assembly 1 0. 0084 11.9
3.18 | Blower, fan, 6K rpm 2 0. 0420 2. 38
3.19 | Valve, relief, ball, N/C 1 0. 0084 11.9
3.20 | Valve, regulator, dual, flow limiting,
manual override 1 0.0168 5.95
3.22 | Valve, regulator, quad. assembly 1 0.0168 5.95
c* Reference Figure 14
d* P and T Control System - N, Supply
2.3 Disconnect, self-sealing (1 conn.) 1 0. 0084 11.9
10.2 Sensor, N2 flow = i B
10,3 Sensor, N pressure
10.5 Sensor, command module total pressure *
ds Reference Figure 13
e O, Supply Circuit
1.22 | Water/separator with shutoff valve and
actuator 0. 0840 1.19
4.1 Valve, electr. act. contr. dual assembly 1 0.0379 2, 64
4.2 Pressure contr., mag. amp. assembly 1 0.0336 2.98
4.11 | valve, relief, ball, N/C 1 0. 0084 11.9
4.15 | valve, manual shutoff, N/C 2 0. 0042 24
4.16 | vValve, demand pressure and relief, N/O 1 0. 0420 2.38
4.17 | valve, manual shutoff, N/C 1 0.0042 24
4.19 | Valve, regulator, quad. assembly 1 0.0168 5.95
4.22 ] Valve, rcgulator {dual), man. override 1 0.0168 5.95
- 31 -
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Table 12. Preliminary Apollo ECS Reliability Apportionment
(First Order Analysis) (Continued)
Equivalent
Mean Time
Failure Between
Equivalent Rate Failures Assumed
Part Series Percent A | {*Million Equivalent Usage
No. Item Description Quantity (1000 hrs) hours) Cycles (Cy/hr)
1 e O, Supply Circuit (Continued)
2.3 Disconnect., self-sealing (1 conn.) 1 0. 0084 11.9
; 5.11 | Valve, regulator and relief, man.
override 1 0.0252 3.97
5.20| Valve, regulator and relief, man.
override 1 0.0252 3.97
7.2 Sensor, O) partial pressure 1 0.0168 5.95
7.6 Sensor, pressure differential s * *
9.2 Sensor, O) flow rate " * <
9.3 Sensor, Oj pressure (entry) * *
9.4 Sensor, position % g
9.8 Sensor, O) pressure
10.5 Sensor, command module total pressure * * s
O, Re-entry Supply
4.6 Tank, oxygen storage, 7500 psi 1 0.0017 59.5
4.7 Valve, manual shutoff, high pressure,
N/C 1 0. 0084 1.9
4.8 Valve, manual shutoff, high pressure,
N/C 1 0.0084 11.9
4.9 Valve, regulator, high pressure, N/C 1 0.0210 4. 70
4.10| Valve, check, ball, N/O 1 0. 0042 24
O, Back Pack Supply
4.13| Valve, Relief and manual shutoff, N/C 1 0. 0126 7.93
4.14| Cap, sealing 1 0.0008 119
2.3 Disconnect, self-sealing (1 conn.) 1 0. 0084 11.9
e* Reference Figure 10
£ Water Supply
5.1 Disconnect, self-sealing, N/C 1 0. 0084 11.9
5.2 Valve, check, preset, N/C 1 0. 0067 14.9
5.3 Valve, shutoff, manual, N/C {2) 0. 0042 24 480, 000
5.4 Valve, three-way, manual, N/O 1 0.0067 14.9
5.8 | Valve, shutoff, manual, N/C 1 0. 0042 24 2/hr
5.9 Valve, check, ball, N/C 1 0.0042 24
5.10] Water tank, bladder 1 0. 0126 7.93
5.14| Heat exchanger, glycol/water, // flow 1 0.0008 119
5.15] Water tank, bladder 1 0.0126 7.93
5.16| Valve, three-way, manual; N/O 1 0. 0067 14.9
5.17] Valve, shutoff, manual, N/C 1 0. 0042 24
2,3 Disconnect, self-sealing (1 conn.) 1 0. 0084 11.9
11. 2 Sensor, water quantity d s s
£ Reference Figure 12
g¥* Air Lock
6.1 Valve, shutoff, manual 1 0.0042 24 480, 000 1/50
6.2 Valve, shutoff, manual 1 0.0042 24 1/50
6.3 Valve, shutoff, manual 1 0. 0042 24 480, 000 1/50
-3z - CONSIINEGN
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SN

Table 12. Preliminary Apollo ECS Reliability Apportionment

SPACE and INFORMATION SYSTEMS DIVISION

(First Order Analysis) (Continued)

Equivalent
Mean Time
Failure Between
Eqguivalent Rate Failures Assumed
Part Series Percent A (**Million Equivalent Usage
No. Item Description Quantity {1000 hrs) hours) Cycles (Cy/hr)
g Air Lock {Continued)
6.4 Valve, shutoff, manual 1 0. 0042 24 480, €00
10. 4 Sensor, airlock pressure %* * ] 480, 000 1/50
g% Reference Figure 11

B - These components are to be used in conjunction with display instrumentation and reliability

will be apportioned when this data is available.

N/C - Normally closed
N/O - Normally open
X flow - Cross flow

/! flow - Parallel flow

- 33 _
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Figure 8. Suit/Cabin Air Circuit Logic Diagram
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(MANUAL OPERATES |
1.18
SELECTS
BY PASS
(MANUAL)
COMPONENT
NUMBER ITEM DESCRIPTION LEGEND
[N} Valve, check, raspberry, nommally closed
1.2 Heat exchanger, air-air reg ion cross-fl
1.3 Valve, check, dual, butterfly, nomally closed
1.4 Valve, limiting and monual shutoff, normally open
1.5 Connector, normally open A = CABIN EMERGENCY/SUIT MODE
1.6 Valve, check, flapper, normally closed
1.7 Connector, orifice, normaily closed (O =HUMAN OPERATION
1.8 Debris trop, screen filter
1.9 Catalytic filter [J =mecHaNIcAL operaTION
1.10 Compressor, centrifugal, 10,000 rpm .
1.1 Valve, check, raspberry, nomally closed S/T/1 = SENSES, TRANSMITS, AND INDICATES
1.12 Valve, monual shutoff, normally open
1.3 Valve, check raspberry, normally closed S/T/W = SENSES, TRANSMITS, AND WARNS
1.15 CO9 and odor adsorber
1.16 Valve, pressure relief with manual override, normally closed @ = POSITION
1.7 Switch, rotary, four-position assembly
t.18 Valve, electrically actuated control with manual override ® = PRESSURE
1.9 Heat exchanger, glycol-air cross-flow
1.20 Heat exchanger, water-air cross=flow (@) = TEMPERATURE
.2y Valve, diverter, manual
1.22 Water separator, with shutoff valve and actuator @ = VOLTAGE
1.24 Tempe 1, tc amplifier
1.25 Temperature selector, rheostat SV =SERVO VALVE
1.28 Temperat I, ic amplifier
5.5 Valve, electrically actuated control with manual override O/C = OPEN OR CLOSED
5.3 Valve, check, quadruple ossembly, normatly open
Notes: 7.1 Sensor, air pressure NOTE:
Does ret include ground check-out provisions. 7.3 Sensor, i temperature A, B, C, ETC, AFTER COMPONENT NUMBER INDICATES
M . 7.6 Sensor, pressure differential POSITION IN CIRCUIT OF SUCCESSIVE IDENTICAL
Unless otherwise indicated parallel redundancy is ’ ! ! COMPONENT
assumed rather than sequential redundancy. 7.7 Sensor, pressure differential
Normal operation and normal conditions assumed 7.9 Sersor, air f.mp.eruture.
unless otherwise indicated , 7.10 Sensor, “.’"m indication
Logic based upon requirements for success . 7.1 Sensor, dir temperature

Figure 8a.

£

R

- 37, 38 -

Suit/Cabin Air Circuit Logic Diagram

SID 62-557-2



q
|
i
|
l
I
I
l
|
|

l 2.20A 2.
OPENS 4 O1I
I (automatio) | | &
WATER- GLYCOL e
CIRCUIT WILL OPERATE l —
SUCCESSRULLY 2.20A 2,
ox l }—) OPENS ) = 8@
{(AUTOMATIC,
¥ | A
l M = ’2_‘
— OPENS <+ O
| @utomanc) | | o
2.9A 2.208 2,
Ciotn CLOSED L—J OPENS [ o
(MANUAL | ] (AUTOMATIC) _(ﬁ
OR I
iF I
2.98 I : 1
l r E
2.9 | OPENS =
2.248 CLOSED {(AUTOMATIC)
CLOSED (MANUAL l L.
8.1 2.208 [
L—__] l /TN l | [ orens H
oal IF TRUE(P) (AUTOMATIC) L
SELECTOR 2,20¢ rg;
COMPONENT AND —4 OPENS OP!
NUMBER ITEM DESCRIPTION SENSOR I (AUTOMATIC) L-
2. Valve, check, ball, normally closed I IF NOT
2.2 Valve, relief, ball, normally closed SUFFICIENT ‘ L_| 2,200 rSP
2.3 Disconnect, self-saaling {iwo connections) COOLING OPENS '-‘l [of
2.4 Valve, manual shutoff, normally open OR LEAK (AUTOMATIC) L.
2.5 Valve, check, ball, normally open
2.6 Heat exchanger, water—glycol, paratlel-flow
2.7 Reservoir, glycol, spring operated I '
2.8 Volve, monwal shutoff, nonmally open
2.9 Volve, manual shutoff, normaily open l
2,10 Valve, stectrically d control thy |
2.12 Temp control, magneti ifier
2,13 Volve, duol elecirically actuated control with manual override l l
2.14 Valve, check ball, normally closed 2 éOA 2.208
2.15 Pump, glycol, gear, 6,000 rpm . .
2.16 Switch, rotary, four-position assembly l—— - OPENS OPEN
2.19/5.6 Valve, dual, electrically actuated control with manual override (AUTOMATIC) {AUTC
2.20 Voalve, electrically actuated control, nommally closed .
2.22 Temp , magnetic amplifier _
2,24 Disconnect, seif-sealing, assembly
35 Temp lector, rh l
7 Tomp control, magnetic amplifier
8.6 Sensor, glycol temperature {
8.9 Semsor, glycol temperature i
9.5 Semsor, air temperature |
9.6 Sensor, air temperature I
{
(O =HUMAN OPERATION I ‘
0 = mecHANICAL OPERATION l
S/T/t = SENSES, TRANSMITS, AND INDICATES I ‘
S/T/W = SENSES, TRANSMITS, AND WARNS |
®  =rowe I |
e —— e e —
@ = HUMIDITY DROPPED DURING EARCH APPROACH
O/C = OPEN OR CLOSED ‘\
NOTE:
A, B, C, ETC., AFTER COMPONENT NUMBER INDICATES i
POSITION IN CIRCUIT OF SUCCESSIVE IDENTICAL i
COMPONENT i




[SPACE 7 [Mpace. |

2.0A 2,10 2,20C 2.208 2.1¢ 2.1D
[ENS H 5"“’,‘.’3‘., |—| 6‘.‘2&%‘?« | orens | OPENS | CLOSED |§ CLOSED L] cLosep | jclose | b I
YTOMATIC) L L @ _J (AUTOMATIC)] | (AUTOMATIC) | | (AUTOMATIC)H | | (AUTOMATIC) | | (AutOmATIC) | | (AUTOMATIC)
V15— "1 [2aa 2.10 2.208 2.200 2.18 2.8 I
PENS et piiid HH X2IATOR 1] opeNs - opens - cLosED L] cLosep L] closep L1 cLosep |
UTOMATIC) dLu (utomanio)] | iautomatic)] | auromatio)] | wutomatior| | automanc| §iautomario
) ﬁm;‘l r‘;fg?gc;;l 2.8 2.1C 2.20A 2.20C 2.1A 2.1C _l l
PENS H Sresanon H Sbtiaron H orens — OPENS  cLoseD 4 CLOSED 4 closeo Hcioseo
uTOMATIO) | 4 © JL_©@ | |«uromatic)] | automanic) | | (automaric)| | automanic) | fautomanicy | [auromanc |
20C [TSPACE — 7] [TSPACE — 2.18 2.10 2.20A 2.200 2.1A 2.10 | I
PENS SPERATION | Oreranion | orens L { opens | Jcioseo | ciosio | {ciosee Llciosen | I
WTOMATIC) L_; JL_© wutomatic)| | wutomaricy | | automaric [ Jcautomaric) | | automanio) | | auromanic I
i MOON SUBSOLAR MODE I I
|
i |— — l
iiﬁﬁrouj 2.A 2,208 2.18 2.20C 2.1¢ 2.200 2.10 | |
{PERATION | OPENS L | cLosep L cLoseo | cLoseo L] cLosep L} cLosen || cLosep L I
: (AUTOMATIC) | | (AUTOMATIC) | | (AUTOMATIC)] | (auTOMATIC)] | (AuTOMATIC)| | (AuTOMATIO)N] | (AUTOMATIC)
PACE ] .18 2.1¢ 2.20D I _——
IADIATORS - 2.20A 2,1A 2.20C . .20 2.10 o e
SPERATION | orens L] cLosep L cLoseo L | cLosep CLOSED L] crosep L] closeo - éfgssn CRYOGENIC |
automatic) | | auromanio] | automario| | automancy [ ] cautomang [ auromanc (AUTOMATIC) Ef(éL ANGE ] |
. SERVICE
2.1C 2.20A 2.1A 2.208 2.8 2.200 2.1D r ] {MODULE |
OPENS L cLOsED L] cLoseD |1 cLoseo L] cLoseo L{ cLosep L] cLosep - 2.28 | - — — —
(AutoMATIC) | | (auTomaTiC)| | (AUTOMATIC)] | (AuTomaTIO)N] | (AutomaTIO) | (auTomaTic) | | (AuTOMATIC) CLOSED
- L—— | 2.3 |
OPEN
2.1p 2.20A 2.1A 2.208 2.18 2.20C 2.1¢
OPENS — cLosen < CLOSED — cLosep 4 closto - | closep H cLoseo — | I
(automatic) | | automanicy| | wutomaricy| | automanic)| | @automana] | auromaticy | | automaric)
SPACE MODE I |
| 2.48 2.4
l OPEN | CLOSED 2 Bse
(MANUAL) {MANUAL)
2.20¢ 2.200 | L_ l g g
|| orens | Goene PRV | 2.8 2.1¢ 2.10 2.2A 2.28 - 4 =
(AUTOMATIC) w,gM ] cLoseo CLOSED CLOSED closeo [ OreN oren PART OF APPROACH,
{ ATIC) THERMAL REENTRY
—_——— ,
LOAD OF
EARTH CHECKOUT AND ASCENT ONLY o DESCENT,
VICE MODULE RECOVERY
2.3A | I
OPEN |
-l
2.4A I 2.4A
OPEN CLOSED éf’gm
(MANUAL) I (MANUAL)
i ‘_ ——— —— — ]
I — e — — — —— — — — s — —— — — — — — — —— — — — — t——— —
: .
Figure 14, Apollo Water-Glycol Circuit-Reliability Analysis
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BACK PACK O, SUPPLY
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Og SUPPLY Gﬁgi B 13 2.9 &3 p
o I O SUPPLY O LEVES = = Gpens o/c o/c SUCCESS
. Al
o/C OPERATE LAVMNFJ UTOMATIC] (MANUAL (MANUAL)
KAUTOMATIC l | — |
VENTS MANUAD
| SENSES | |
02
r 4.228 | 2.3F |
o/ CLOSED
HAUTOMATIC) 9.4A | |
MANU VENTS l H e B | |
AL (TRUE —
" SENSES wosimoN | | Tir 100 Low!
4224 l pas LF @100 Low, l__— 4.3 l
. H ED
| o/c | (MANUAL ] e AL APPROACH REENTRY AND
(MANUAL) | 9.48(D) RECOVERY MODES ONLY
| v VENTS | 1R |
. {TRUE
| M s H | | POSITION
M 1 TRUE (P) 414
| LITF LOW | 3}2‘ I | CLOSED |
O U (MANUAL)
| JaANUAL | l 9.8 |
| 105@ | n
B Ry iy | | TRUE (P)
| we® I
T
- L CREW SAFETY 1 I
e o — e 7.2A @D .
e - r 42 SENSES 4.1A COMPONENT ITEM DESCRIPTION
JSES — 0/C NUMBER
Tomanicy | | | . OPERATES g‘: (AUTOMATIC
2.3 4.15A itm 4,228 4.8A 4.88 I 4.t 1.22 Water Separator, with shutoff valve end actuator
dPEN OPEN ICLOSED —{1CLOSED CLOSED 1 C'LOSED 'TT‘ O/C — 2.3 Disconnect, self-sealing (one connection)
{(MANUAL) KAUTOMATIC) KAUTOMATIC) 7.28 4.) Valve, electrically actuated control, dual assembly
9 | | 43 SéNSE 4.18 4.2 Pressure control, magnetic amplifier assembly
5ES . — o/C 4.6 Tark, oxygen storage, 7,500 psi
TOMATIC) I | OPERATES 3‘;’5® TOMATIC) 47 Valve, manwal shutoff, high prassure, nomally closed
4.8 Valve, manual shutoff, high pressure, nommally closed
L 4.9 Valve, regulator, high pressure, nom,)ally closed
—_——_——— —— ——_—— e —_— e —_— e ——_—— —_——— —— 4.10 Valve, check ball, normally open
4.1 Valve, relief, ball, normally closed
“ON* INITIALLY 4.13 Valve, relief and manual shutoff, nomally closed
4.14 Cap, sealing
4.15 Valve, manual shutoff, normally closed
4.16 Valve, demand pressure and relief, normaliy open
417 Valve, manual shutoff, nomally closed
E.7A - 4.8A 4.9A | 1 4.10A 2.3k 419 Valve, regulator, quodruple assembly
LOSED OPEN REGULATES o/C CLOSED 4.22 Valve, regulator (dual) manual override
5. Valve, regulator and relief, manual override
(4:.L202:E | éfg: " 5.2 Vulve: regulator and relief, manual override
7.2 Sensor, O partial re
(MANUAL) (MANUAL) 7.6 So"m‘:r': przsf:roldifz:::ial
4.15A 9.2 Sensor, O flow rate
178 4.88 4.9 __J 4.108 Closep . * 2
. - F—1 . 9.3 Sensor, Oy pressure (entry)
:LOSED OPEN REGULATES o/C (MANUAL) o1 Sarsor, peZition
9.8 Sensor, O pressul
YUNDANT DURING APPROACH, REENTRY AND RECOVERY) 10.5 Seror, dule total p
Miro, 1 ; )
|_ LEAKS | ; o
o = HUMAN OPERATION
b
9.8 ! {0 =MECHANICAL OPERATION
?{L’J/E ' ® — 1 @D = PARTIAL PRESSURE
2
r;. A" _] . () = TOTAL PRESSURE
' CLOSED ®
— —_— — — = FLOW RATE
vE (MANUAL !
9.2@® L_ _ __] r5—_” —] l_5-.,, j 193 rs-_zo —I l—s.zo —I IRIG) S/T/1 = SENSES, TRANSMITS, AND INDICATES
S/1/1 VENTS o/ LA VENTS o/c S/ S/T/W = SENSES, TRANSMITS, AND WARNS
TRUE 0, (®) liMAN)AiJ QMNAD TRUE(P) L(MANJAiI L(jAAMJA-L)J TRUE (P) /W ’ !

[z ] 7 L, 1

NOTE:
} O2 — 450/2 - 3&:75 L L JV‘ENTS l ISO'/ZCO A, B, C, ETC., AFTER COMPONENT NUMBER iNDICATES
ﬁLE_EaEKS NO_T; L[_J'[OMAE : LU'I'OMA‘lE)'r TOMATIC, l(:u.l’oMA'lﬂ POSITION IN CIRCUIT OF SUCCESSIVE IDENTICAL COMPONENT
Vs 3 Figure 10. Oxygen Supply Circuits Logic Diagram
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WATER SUPPLY SYSTEM

5.1
CLOSED
WATER
SUPPLY
WILL
OPERATE
SHUTOFF
VALVE
CLOSED
{MANUAL)

l
l
|
|
|
I
|
I
|
l
|

APPROACH, REENTRY,
RECOVERY, AND MODES
POST LANDING

COMPONENT
NUMBER

ITEM DESCRIPTION

N'—\-‘ta-;:'svcb;wk'—-w

R R R NN T NN NT N TN TN

—

Disconnect, self-sealing, (one connection)
Disconnect, self-sdaling, nommally closed
Valve, check, preset, nomally closed
Valve, shutoff, manual, normally closed
Valve, three-way, manual, normally open
Valve, shutoff, manual, normally closed
Valve, check, ball, normally closed
Water tank, bladder

Heat exchanger, glycol-water parallel flow
Water tank, bladder

Valve, three-way, manual, normally open
Valve, shutoff, manual, normally closed
Sensor, water quantity

S/T/l = SENSES, TRANSMITS, AND INDICATES

S/T/W = SENSES, TRANSMITS, AND WARNS

NOTE:

A, B, C, ETC., AFTER COMPONENT NUMBER INDICATES
POSITION IN CIRCUIT OF SUCCESSIVE IDENTICAL
COMPONENT

@ = QUANTITY

(O =HUMAN OPERATION

(O = MECHANICAL OPERATION

FUEL
.9
OPERATES
2.3C
CLOSED
I
5.168
CLOSED
(MANUAL)




2,3C
OPENS

5.168
OPEN
{MANUAL)

e — - —— ——— —— — — ——— — —

5.3 .
1 0/C -
(MANUAL) B

5.3
o/c
(MANUAL)

5.8
o/C
(MANUAL)

NORTH AMERICAN AVIATION, INC.

5.17
o/C
(MANUAL)
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5.7
o/c
(MANUAL)

(CREW SAFETY)

- 45, 46 -

SUCCESS

‘53."45"‘ ‘ 3.28 gi’lE;ATES 5.10 5.15 5. 16A
T T manuay | ) o/c (PART) OPERATES operates | T | (OA,:’AESSAL)
| ' | |
X L | |
N | T | |
] ' | |
| 5.4 11.5@ | |
| 4 cLOSED S/1/1 |
| (manuAL) t TRUE @ |
| | | (CREW SAFETY) '
l L |
| I:@ —| (CREW SAFETY) !
| | DECREASES |
TOO FAST @ 5.16A 1.2
| CLOSES $/1/1
- (MANUAL) TRUE @
I
-
e 1
IDECREASESl
TOO FAST
Figure 12. Water Supply Circuit Logic Diagram
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CONTROL
SYSTEM
WILL OPERATE,
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VALVE
CLOSED
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3.1A
OPENS

3.18A
OPERATES

(AUTOMATIC)
\ 3.10 3.12 3.1A 3.1B
| CLOSED CLOSED 7 CLOSED CLOSED
| (MANUAL" (MANUAL) (AUTOMATIC) (AUTOMATIC)
| 3.1B
OPENS
(AUTOMATIC)
10.5(P) 3.1A
S/1/1 o/C
TRUE (MANUAL)
(CREW SAFETY)
MANUAL 3.1B
SENSES o/cC
: (MANUAL)
.E, APPROACH, REENTRY, AND RECOVERY MODES
NUAL 3.12 3 3.10 3.9 CABIN - AIR
\TION OPEN OPEN OPEN OPEN VALVE
12 (MANUAL) (MANUAL) CLOSED
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3.188

OPERATES

3.18 3.14

SPARE 3.14 OPERATE SUCCESS
OPERATES (MANUAL)

3.18A ||

OPERATES

POST LANDING MODE

3.17A 3.17A

n OPERATES OPERATES
3.18A 3.188
(MANUAL) (MANUAL)
3.178 3.178

L OPERATES ‘ OPERATES

J 3.18A 3.188
(MANUAL) (MANUAL)

DNENT

R ITEM DESCRIPTION

|

1 Valve, dual regulator and relief, with manual override

2 Heat exchanger, air-glycol cross-flow

9 Snorkel, inflow and outflow (required to operate post-landing only)

10 Valve, manual shutoff, normally closed

12 Valve, manual shutoff, normally closed

14 Valve, diverter, manual.

17 Switch, rotary, three-position, assembly

18 Blower, fan, 6,000 rpm

S Sensor, command module total pressure

() = HUMAN OPERATION

[] =MECHANICAL OPERATION
S/T/I  =SENSES, TRANSMITS, AND INDICATES
S/T/W = SENSES, TRANSMITS, AND WARNS

@ =QUANTITY

NOTE: A, B, C, ETC., AFTER COMPONENT NUMBER INDICATES
POSITION IN CIRCUIT OF SUCCESSIVE IDENTICAL
COMPONENT

Figure 14. Command Module Pressure/ Temperature Control System Logic Diagram

/ 49, 50 . oS
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Reliability Apportionment of GSE Water - Glycol Unit

P

SID 62-557-2

Failure
Rate Equivalent Assumed
Percent A MTBF Equivalent Usage
Item Description Quantity Complexity Thousand (hrs) Cycles Cy/Hrs.
Np Circuit
Disconnect, Quick 1 10 2. 86 34,950 1455 1/24
Valve, Manual, Shut-off 2 5 1.43 70, 000
Regulator, Pressure 1 10 2.86 34,950
Valve, Manual, Bleed 1 5 1.43 70, 000
Valve, Vent, Relief 1 10 2.86 34,950
Diaphragm 1 25 7.15 14,000
Water - Glycol Circuit
Disconnect, Quick 6 10 2. 86 34,950
Sensors, Temp. 4 5 1.43 70, 000
Sensors, Pressure 2 20 5.72 17,500
Gages, Mech., Pressure 3 20 5.72 17,500
Gages, Mech., Temp. 1 20 5. 72 17,500
Transducers, Temp. & Press. 4 30 8.58 11,700
Controller, Temp. & Press. 2 40 11.44 8,720
Valves, Flow & Press, Control 2 40 11. 44 8, 720
Valves, Manual Shut-Off 8 5 1.43 70, 000
Valves, Solenoid 7 10 2. 86 34,950
Meter, Flow 1 30 8. 58 11, 700
Pump, Vacuum 1 40 11. 44 8,720
Indicator, Micron 1 30 8. 58 11, 700
Heaters 2 1 0. 29 345, 000
Controls, Heater 2 2 0.57 175, 000
Exchanger, Heat 1 1 0.29 345, 000
Unit, Refrigeration 1 250 71. 50 1,400
Valve, Spring Loaded, Relief 2 10 2. 86 34,950
Valve, Check 2 5 1.43 70, 000
Pump, Turbine 1 15 4, 29 23, 300
Switch, Pressure 1 15 4, 29 23,300
Motor, Pump 1 15 4. 29 23,300
Indicator, Liquid Level, Mech. 1 1 0. 29 345,000
Switch, Toggle 7 1 0.29 345, 000 465, 000 32/24
Lamp 7 1 0. 29 345, 000
Valve, Flange 40 1 0. 29 345, 000
Instrument, Tee 11 1 0.29 345, 000
Joints, Welded 100 -
Reservoir 1 1 0.29 345, 000
Valve, Fill 1 5 1.43 70, 000
- 51 -
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minimum values which must be obtained in order to meet an overall 300-hour
MTBF requirement.

Failure rates are additive and, accordingly, trade-offs can be intro-
duced in a simple manner. Should any component-apportioned value be
outside of practical achievement, this value may be lowered and "traded-off"
with other component values to arrive at the same cumulative total. Also,
if parts can be obtained that are generally better than the apportioned
reliabilitv figures, the reliability of the GSE mission essential equipment
(GSEMEE) for a 50-hour mission time may be greatly improved. Considering
the system checkout console and the water-glycol unit as comprising the
GSEMEE and each just meeting a 300-hour MTBF, the reliability of the
GSEMEE for a 50-hour maintenance-free mission time is 0, 74082, that is,
the probability of the GSEMEE failing during a 50~hour mission is 0. 25918.

The analysis contains the quantities of each component and the relative
complexity values. The equivalent cycles are based upon assumed frequencies
which are also shown. The analysis is divided into an N circuit and a
Water-Glycol circuit for ease of use.

ELECTRICAL POWER SUBSYSTEM

Fuel Cell Module

Reliability analysis of the fuel cell subsystem during the period April
through June 1962 has been oriented towards reapportioning the fuel cell
module failure mode analysis and defining a qualification-reliability test
plan. First-order failure modes that have a deleterious effect on module
operation have been noted and design action have been taken to eliminate or
minimize all first-order failure modes.

The reliability objective for the individual fuel cell module has been
changed from 0.868 to 0.971 to be consistent with the Apollo mission
requirements.

Reliability Reapportionment

During the last quarter a numerical reliability analysis was performed
on the fuel cell subsystem, including its instrumentation. The results of
this analysis proved to be incompatible with overall system reliability
requirements, and following design improvements a new analysis will be
made. The following paragraphs indicate the status of this activity to date,
and the procedural steps taken to accomplish the apportionment of the system
reliability requirement.

-52 -
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‘ Component Operating Characteristics Study

SPACE and INFORMATION SYSTEMS DIVISION

Component operating characteristics were studied to determine their
effect on mission reliability. Based on this study, components were classified
as operational for the full duration of the mission or operational for short
finite , durations. A 400-hour mission time was used for components required
to operate continuously throughout the mission. For components required to
operate at intervals during the mission, the time was adjusted accordingly.

Component Ranking. All components were ranked and assigned relative
reliability indicies expressed in terms of relative failure rates.

Failure Rate Study. Failure rate data from various sources were
evaluated and compared to the relative failure rates assigned to all components
by the ranking method. Adjustments were made where necessary. The
failure-~-rate data sources used are cited in References 1, 2, 4, 6, and 10. The
failure rates exhibited under a known set of environmental conditions were
adjusted to the operating stresses to which the components will be subjected.

Logic Diagrams

A reliability logic diagram was prepared for the system as an arrange-
. ment of major blocks (Figure 15) in order to show the effect of a failure on
the system operation. Each major block is an arrangement of components

as shown in Figures 16 and 17.

Numerical Reliability Analysis

This analysis is intended to provide a basis for the apportionment of
the system reliability requirements to establish independent module and
component reliability objectives and to aid in selecting the best system and
component designs by appraising the relative effects of different components,
the redundancy of the parts, and other factors contributing to reliability.

Reliability Objectives

The reliability objective for the complete fuel cell subsystem is 0.9977
for a 400-hour mission. The reliability objective for the independent module
was estimated to be 0. 868 for the same mission. The reliability objective for
individual modules was based on a subsystem which provides normal power
when two or more modules are operating and emergency power when two
modules fail. This reliability objective was further apportioned to establish
component reliability objectives.

- 53 - 7 F
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MODULE RELIABILITY = 0,868

| MODULE R=0.9547 |
: 1

| N, REGULATOR R=0.9973 ]
]

( G, REGULATOR R = 0.9508 1
]

| H, REGULATOR R = 0.9835 1
L

| MOTOR - PUMP-SEPARATOR-VALVE ASSEMBLY R=0.9865 l
1

| MOTOR - PUMP-ASSEMBLY-GLYCOL R=0.9916 1
]

L REGENERATOR BY-PASS-H, R = 0.9960 ]
]

I ACCUMULATOR R =0.99%8 |
]

o REGENERATOR BY-PASS VALVE-GLYCOL R=0.9978 |
]

[ REGENERATOR - H, R =0.9988 |
]

| REGENERATOR - GLYCOL R=0.9988 |
]

| CONDENSER R =0.9988 |
]

[ 2 PREHEATERS R =0.99940 |
]

{ TUBING AND MECHANICAL CONNECTIONS R = 0.99940 ]
]

| WIRING AND ELECTRICAL TERMINALS R=0.99952 |
1

{ 3 SHOCK MOUNTS R =0.99958 |
I

| N, TANK R = 0.9990 |
1

| INSTRUMENTATION R =0.99968 ]
1

| MODULE JACKET R =0.99986 ]
]

| 2 POROUS PLUGS R = 0.999920 |
I

| 2 PURGE VALVES R=0.999980 |
1

| PRESSURE RELIEF VALVE R=0.9999948 |
1

| FILL VALVE - N, TANK R=0.999972 |

Figure 16,

- b5 -

Fuel Cell Module Assembly Simplified Reliability Logic Diagram
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ISOLATION GROUP RELIABILITY = 0,999986

O2 SQUIB VALVE R =0.9999930

H2 SQUIB VALVE R =0.9999930

Figure 17. Fuel Cell Module Simplified Reliability Logic Diagram
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W

. Review of Objectives

The component reliability objectives were reviewed whenever a design
change was made, or whenever failure rate data became available. New
goals were established as required, and their effect on the remaining
components of the independent module was analyzed. To date, three major
reviews have been performed.

Monte Carlo Analysis

To demonstrate the physical meaning of the component failure rates
and random failures associated with the subsystem operation during a
400-hour mission, the Monte Carlo method was applied to simulate operation
on flights to the moon and return. The mathematical model provided mission
realism through random determination of failures by simulating 70 complete
flights. In case of a failure, the model indicated which component failed,
the time of failure, the flight on which it occurred, and the status of
system-power output as the result of the component failure,

Failure-Mode Analysis

A failure mode analysis, considering each component of an individual
‘ fuel cell module, has been completed during the reporting period. The

failure mode analysis (Table 14) considers the component, failure modes of
the component, probable cause of each failure, the effect of the failure on
mission success and on crew safety, and a remarks column showing possible
corrective action to preclude a failure. All first-order failures are
deleterious to the individual module in which the failure occurs. There are
no propagating or sequential failures that will cause a loss of the entire fuel
cell subsystem.

Design Improvements

As a result of reliability considerations and design reviews the
following design improvements have been incorporated into the fuel cell
subsystem:

1. Secondary regenerative by-pass valve - improved porting by
providing a more thermally efficient contact area of fluid
(hydrogen) with the thermostat.

2. Nitrogen tank - improved circumferential weld area for ease of
installation and inspection.
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3. Regenerator by-pass valve (bi-metallic) -~ added brazing of locknut
to prevent any possibility of it vibrating loose; increased brazing
area around tube connection to distribute stress,

4. Glycol accumulator - changed mounting to provide greater
resistance to vibration and shock.

5. Condenser - increased brazing area around tube connections to
distribute stress, redesigned header connections and tubing to
give greater strength and simplify brazing.

6. Water discharge valve - eliminated one set of bellows to prevent
hydrogen from leaking into potable water; redesigned assembly
to facilitate checking of valve-pressure setting, and improved
hydrogen and water inlet.

7. Pressure regulator mounts - eliminated material which showed
sublimination problems in space vacuum,

8. Segmented manifold - proposed alternate design to reduce stressing
of components, eliminate sealing problem, simplify manufacturing
and assembly, and reduce human error,.

9. Circulation pump and separator - changed porting of hydrogen and
water inlet to reduce turbulence and slugging of water and added
labyrinth seal to prevent water accumulating in pockets; performed
design~-information test to evaluate vane material relative to wear
properties, evaluate bearings relative to capacity and sealing, and
test material compatability; improved manufacturing and assembly
procedure of motor rotor and stator to allow checking of rotor-
to-stator clearance.

10. Glycol coolant pump - initiated design information test of compatible
materials relative to graphite bearings reacting with the stainless
steel shafting (carbon in the graphite bearings can react with the
chrome in the stainless steel in the presence of water under
stagnant conditions and cause pit corrosion).

11. Torsion rod system - increased beam strength of linkage beam and
simplified the forging process to produce this part, reduced friction
at contact and pivot points of linkage system, and simplified
assembly by making rods symmetrical so they can be assembled
either way, reducing human error; insulated piping of primary
regenerator to prevent any shorting of electrodes due to vibration
and shock during launch.

- 63 - .
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12. Module jacket - eliminated brazed joint between insulation screen
and liner to eliminate any contamination due to flux.

13. Secondary loop regenerator - increased brazing area around tube
connections to distribute the stress, and designed header
connections and tubing to give greater strength and simplify
brazing.

14. Heater harness - initiated study of design of a built-in fuse as a
fail-safe device in event of a short.

15. Intermediate mount bracket - recommended machining procedure
to minimize human error, and alerted quality control for further
study.

16. Control cluster assembly - eliminated prestressing of tubing

joints, redesigned piping subassembly to simplify brazing to allow

for systematic checking of all joints for leaks, thereby decreasing

the possibility of human error, located component piping to prevent
interaction during vibration and shock, specified close quality

control of all assembly and testing procedures, and simplified

assembly of components to allow accessibility for replacement

during all phases of testing. ‘

17. Instrumentation - utilized redundancy and fail-safe techniques to
maximize crew safety.

18. Mechanical connections - performed design-information tests on
welding and brazing techniques to establish rigid quality control

procedures to insure achievement of all performance requirements.

Test Procedure Format

A test-procedure outline intended to ensure a uniform format for test
procedures was prepared in accordance with SID 62-332.1, SID 62.-2042,
Mil-T-91073, and Mil-T-183034, and plans were begun for the use of standard
tests in module testing,

One standard test will consist of a predetermined power-demand cycle
using high loads and changes of load to cause above-normal stresses on
parts. The demand cycle will be designed particularly to reduce those
stresses which were the causes of failure in the component failure-mode

1 - Reference 2 3 - Reference 8 .
2 - Reference 9 4 - Reference 10
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‘ analysis. The intent is to cause failures in a short time and thus to establish
safety factors for the critical modes.

Additional standard tests for environmental conditions have been
studied in which the environments will be varied through normal and
above-normal levels. In this search for critical weakness the intent is to
cause failures in a short time with a limited sample and thus to establish
the safety factors for environmental failures.

Developmental Testing

Subscale Single Cells

A multivariate program has been prepared to investigate the following
characteristics of 5-inch electrodes:

Electrode reproducibility in terms of measurable physical properties,
performance and endurance.

Relationship between measurable physical properties and performance
and endurance characteristics.

. Correlation between the measurable physical properties of electrodes
and the measurable physical properties of the excess corners obtained
when the circular electrodes are cut from square plates.

A sample of approximately 40 sets of five-inch hydrogen and oxygen
fuel-cell electrodes will be available for designed-experiment evaluations.
Non-destructive inspection will be conducted on all electrodes and nine sets
will be systematically selected for destructive inspection. The measurement
of physical properties will be used to determine the within-unit, unit-to-unit,
and time-to-time components of variance for each respective response. The
responses to be measured will include mean pore size, nickel powder shape,
open and total porosity, sinter thickness, permeability, bubble pressure,
X-ray diffraction, and chemical content.

The remaining sets of electrodes that have not been used to obtain
destructive inspection responses will be operated individually to obtain
performance profiles. The electrodes will then be operated simultaneously
at open-circuit conditions to determine the running-time-to-failure. The
endurance tests will be conducted simultaneously in the same temperature
oven to minimize the influence of experimental error on test results.

This program is just getting under way and will require approximately
. two months to complete.

. "85 ARNSREN
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Apollo-Size Single Cells

Manufacturing Process Investigation, A multiple-balance desi ned
experiment has been prepared to determine the relationship betwee
measurable physical properties and the performance-to-endurance g£harac-
teristics of Apollo-size electrodes, and to evaluate the activation process
variables for the oxygen electrode.

Two levels each of four measurable physical property variables will
be investigated. These variables include the thickness of the fine pore, the
percentage porosity of the fine pore, mean size of the coarse pore, and the
percentage porosity of the coarse pore. The three activation process
variables which will be studied simultaneously (at each of two levels) include
oxidation time, oxidation temperature, and activation-solution concentration.
A total of sixty-four electrodes will be available (four electrodes each of
sixteen unique electrode configurations). These electrodes will be randomly
assigned to the factor-level combinations of the activation process matrix.

It should be noted that this program in its present form is dependent
on assumptions about the outcome of the subscale-single-cell program
described above. In the event that unanticipated results occur, this program
will be revised.

Apollo Operating Parameter Evaluation. A full-factorial designed ‘
experiment has been prepared to determine both the separate and combined
effects of three operating variables on electrode performance to endurance.
These variables and their respective levels include the pressure differential
at two levels, the temperature at three levels, and percent electrolyte
concentration at two levels. Each of the twelve factor-level combinations
will be repeated four times and forty-eight electrodes will, therefore, be
required. The particular electrode configuration to be used has been
selected on the basis of current thought on the optimum characteristics
required. At the conclusion of the manufacturing process investigation,
which will be conducted concurrently with this experiment, a new combination
of optimum characteristics may be determined. Should a significant
improvement in electrode state-of-the-art be indicated, a follow-on
performance parameter evaluation will be required.

Identification Procedures

During the past quarter criteria have been established to be used in
determining the serialization of fuel cell parts and components. The
criteria used to determine the mode of identification are as follows:

- o6 RONEDENEHL
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. Serialization

The unit is a separate function identity, (control, regulator, single

cell).

The part is subject to wear, (gears, pump vanes, bearings).

The part can cause a critical failure of the system.

The unit is a salable item, (single module or spares).

Heat Coding

The part is highly stressed and critical, (tierods).

The part is critical with sensitive manufacturing processes, (teflon

seals, electrode sinters).

The specific units now considered for serialization are identified by

an x in Table 15,

‘ Table 15. Units Considered for Serialization
Part Data | Serial No. | Heat Code
Part Name Number | Plate | Required | Required
Complete powerplant assembly | 600100 X
Assembly of fuel cell element 600072 X
Assembly of fuel elements 600069 X
Assembly of oxidizer element 600066 X
Fuel sinter material, fine 600053 x1
Fuel sinter material, coarse 600055 x1
Oxidizer sinter material, fine | 600057 x!
Oxidizer sinter material,
coarse 600058 x1
- 67 -
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Table 15. Units Considered for Serialization (Cont)

Part Data | Serial No. | Heat Code

Part Name Number | Plate | Required Required
Fuel cell gasket 600010 x1
Electrolyte 600060 x1
Fuel cell heating element 601246 X

Fuel cell ceramic pigtail

connector 601319 X
Fuel cell resilient mount 600144,
145 X

Assembly of water check
valve 600137 X

Water check diaphragm 600131 X

Assembly of primary
circulation pump 601324 X

Assembly of primary
circulation pump rotor 601342 X

Primary circulation pump
vane 601343 x!

Primary circulation pump
bearing 601341 X

Primary circulation pump
motor stator and housing 601386 X

Primary circulation pump
motor rotor and sleeve 601387 X

Primary circulation pump
motor receptacle 601359 X

" o8- —CONRDEIT

SID 62-557-2




NORTH AMERICAN AVIATION, INC.

Q="

Table 15. Units Considered for Serialization (Cont)

e
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Part Data | Serial No. | Heat Code
Part Name Number | Plate | Required | Required

Primary circulation pump

motor magnetic pickup 601385 X
Primary regenerator 601247 X
Assembly of primary regen-

erator by-pass valve 600186 X
Primary regenerator by-pass

valve bimetallic element 600147 X
Secondary pump assembly 600215 X
Secondary pump rotor

assembly 600214 X
Secondary pump stator

assembly 600222 X
Secondary pump gear

driver 600212 x1
Secondary pump gear idler 600213 x1 N
Secondary pump front bearing 600203 X
Secondary pump rear-drive

bearing 600204 x1
Secondary pump rear idler

bearing 600205 x!
Secondary pump rear bearing 600220 X
Secondary pump receptacle

assembly 600218 X

- 69 -
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Table 15. Units Considered for Serialization (Cont)

Part Data | Serial No. | Heat Code
Part Name Number | Plate | Required | Required

Secondary pump magnetic
pickup X

Assembly of secondary
regenerator 601459 X

Secondary regenerator by-
pass valve thermostat

assembly 600962 X

Secondary regenerator by-
pass valve diaphragm 601457 X

Water discharge valve

diaphragm X X
Solenoid valves X
EBW valves X
Relief valve X
Electrical connectors X
Pressure pickups X
Temperature pickups X
Teflon pipe packings x!

Reactant pressure regulator
assembly 600022 X

Assembly of reactant pres-

sure regulator bellows 600954 - X
Nitrogen regulator assembly 600073 X
- 70 -
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. Table 15. Units Considered for Serialization (Cont)
Part Data | Serial No. | Heat Code
Part Name Number | Plate | Required | Required

Nitrogen regulator bellows

assembly 600950 X
Assembly of nitrogen tank 600138 X
Nitrogen tank half 600139 . X
Assembly of reactant

preheaters 601233 X
Assembly of module jacket 601400 X
Lower pressure module jacket | 601414 X
Module insulation jacket 601448 X

‘ Tierod system torsion tierod

assembly 600973 X
Tierod system torsion rod 600969 X
Tierod system tie bolt 600970 X
Tierod system coupling nut 600971 X
Tierod system hub 600968 X
Tierod system bearing ring 600974 X
Assembly of unit condenser 601213 X
Assembly of glycol tank 600118 X
Glycol bladder X
1 - Marking must be on packaging rather than on individual parts.

» - 71 -
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Electrical Distribution Subsystem

NASA and S&ID approval was obtained for the redundant dc and ac bus
structures. Reliability analysis was emphasized in verifying the requirement
for the structures and three static inverters, any one of which will provide
the ac power requirements,

A further apportionment of components was made as shown in Table 16.

Table 16. Electrical Distribution Subsystem Reliability Apportionments

Item Reliability

Supercritical gas storage fuel cell reactants 0.9989
Fuel cell subsystem 0.9977

Fuel cell module 0.971
DC distribution (2 buses) 0.9962

GSE umbilical connector 0.99999

Command module - service module

connector 0.99995

Sequencer 0.99999
AC generation and distribution 0.99999

Single static inverter 0.9786
Entry batteries 0.99993

Battery charger (2 required) 0.995

Reliability evaluations of potential suppliers for static inverters and
reentry batteries was completed.

Space Radiators

Two fuel cell space radiator configurations were studied to determine
which would provide the higher reliability. The first configuration (Figure
18) consists of two radiators with a single coolant loop. The alternate
configuration (Figure 19) consists of three radiators with redundant coolant
loops.
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. Numerical Analysis

Standard failure rates from the Martin Handbook of Generic Failure
Rates! were used for conducting the analysis.

The numberical analysis for both systems is as follows:

Component Values - 400-Hour Mission

Lines R = 0.99998 = 0. 05/million hours
Fittings R = 0.99998 = 0.05/million hours
Valve R = 0.99816 = 4, 60/million hours

Probability of Failure in Radiator Loop Due to Meteroids

Total probability = 0.9999000
Probability per fuel cell loop = 0.9999875

Probability of Mission Success

. Configuration 1 - 0. 9999999549 ,

.011275 failures/million hours

Configuration 2 = 0.9999999823 ,

. 004425 failures/million hours

The numerical analysis for probability of mission success shows a
negligible difference in reliability, and both are significantly higher than the
apportioned reliability requirement of 0. 9998 for the radiator loop
subsystem,

Other parameters such as weight and complexity were analyzed. The
two-radiator, single-loop configuration was approximately 10 pounds lighter
than the three-radiator, redundant-loop configuration; the smaller unit had
siX components compared to a total of 28 components for the larger one.
The two-radiator, single-loop configuration is the best system for meeting
system requirements.

Meteoroid Protection

A reliability study to determine probability of meteoroid penetration
on space radiators with no meteroid protection, and with 0. 10 inch-thick

‘ IReference 4
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tube walls was conducted. A summary of the reliability results and analysis .
are as follows:

Reliability of the electrical power subsystem with no meteoroid
protection = 0.99977.

Reliability of the electrical power subsystem radiator with
0.100 thick tube walls = 0.99977.

Since these results indicate that the EPS radiator reliability, with no
meteoroid protection, satisfies the apportioned reliability requirements,
redundant radiator loops would not appreciably enhance the system
reliability. The detailed calculations supporting these reliability figures
are as follows:

Probability of Meteoroid Penetration Analysis

Case 1 - Tube Wall Thickness: 0,032 inch

P/D = 3.5
Vel = 20 Km/sec
Semi-infinite target factor = 1.25
Tube-wall thickness = 0.032

I}

Diameter of particle 0.032/1.25x 3.5 = 0.00731 in

"

p of particle 3.5 gm/ccl

Mass

1/6 wd3 in3 x p gm/cm3 x 16. 387 cm3/in3
3.1416 (7.31 x 10-3)3 3.5 x 16. 387

0.523 x 390.62 x 10-9 x 0.57. 354

1.2824 x 1075 gm

Part/Mz/sec = 10-8

1Referenc:e 5
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. Probability = 10-8/10.76 x 1.2 x 10°

0.001115/sq ft

Three radiator loops or 0.524/3 = 0.18 sq ft critical area per loop

0.001115/0.18 0.00617 or 0.99383

Reliability of radiator loop = Rj> + 3R2 (1-R)

0.98149 + 0.01828 0.99977

Case 2 - Tube Wall Thickness: 0.100 inch

P/D = 3.5

Vel

I

20 Km/sec
Semi-infinite target - 1. 25

Tube wall thickness = 0.1

]

‘ Diameter of particle = 0.1/1.25x 3.5 = 0.0228 in

[}

p of particle 3.5 gms/cc
Mass = 1/6md3 x p x 16. 387

3.14/6 (2.28 10-2)3 x 3.5 x 16. 387

1]

0.523 11.85 10-6 x 57. 354

3.5545 x 10-%4 gm

Part/MZ/sec = 1079

Probability = 10-9/10.76 x 1.2 x 106

0.000111/sq ft

Three radiator loops or 0.524/3 = 0,18 sq ft critical area per loop

_77 -
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0.000111/0.18 = 0.000617 = 0.999383

1

Reliability of radiator loops R13 + 3R? (1-R)

0.998149 4+ 0.001828 = 0.0999977
Note:
P/D = penetration depth per characteristic dimension of projectile
| Km = thousand meters
P = density in grams per cubic centimeter

Combined System Study

A study was completed on the advisability of integrating radiators for
the environmental control and electrical power subsystems. This analysis
resulted in the conclusion that a non-integrated approach was advantageous
for the following reasons.

It was subject to fewer first-order failure modes.

It has a greater tolerability to failures.

It precludes interactions of subsystems.

T SEONBRLNHA
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‘ STABILIZATION AND CONTROL SUBSYSTEM

Analysis of the stabilization and control subsystem (SCS) has considered
only faulty electronic outputs and inputs of major SCS blocks. The effect of
each malfunction on mission success and compensation for it are presented
in Table 17. ''Repair if possible'' means to use a redundant circuit, use a
spare, or repair. The final list of on-board redundancies, spares, and
spare parts has not yet been defined.

The effect of a failure on the mission and on crew survival will depend
on the conditions under which the failure occurs. In most instances, if a
malfunction is detected, there will be time to make intelligent decisions.
However, there will always be the possibility of a dangerous failure at a
critical moment, The likelihood of such an occurrence will be reduced
through a continuous updating of this analysis.

The probability of a malfunction occurrence was not considered. By
making dangerous possible malfunctions evident, this report should cause
design changes which will reduce this probability. Later failure analyses
will include the failure-probability factor.

"7 SOOI
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EARTH LANDING SUBSYSTEM

Pyrotechnic Requirements

An evaluation was made to determine the number of pyrotechnic
initiators needed for each of the earth landing subsystem functions. Since a
parallel channel sequencer will be used, one initiator in each channel for each
function will provide the required redundancy to meet the system-reliability

requirements.
Pyrotechnic Initiators
System Function Required

No 1 drogue chute mortar initiation 2
No 1 drogue chute release 2
No 2 drogue chute mortar initiation 2
No 2 drogue chute release 2
Main chute deployment (3 pilot chutes) 6
Parachute bridle release 2
Upper heat shield jettison initiation 2
Lower heat shield release 2
TOTAL 20

Pyrotechnic Ignition

A qualitative reliability study of explosive-bridge-wire versus hot-wire
ignition of pyrotechnic devices was performed. The results, summarized in
Table 18, reveal that either method when properly designed, would meet
reliability and safety requirements.

o
94 - SONFDENTS

SID 62-557-2




NORTH AMERICAN AVIATION, INC.

Sl
o

Table 18.

@ SPACE and INFORMATION SYSTEMS DIVISION

Summary of Considerations of

EBW and Hot-Wire Ignition Methods

System

Advantages

Disadvantages

EBW

Inherently safe

Acceptable electrical
reliability

High probability of ignition

Low sensitivity to high
temperature and shock
(does not contain
primary explosive)

Gap tube outgassing

Shut down transients

Difficult to check
Radiation effects unknown

Low temperature effects
unknown

Probable need for coded
signal

Hot-Wire

Simple

Fully developed state-of-the-
art

Economical
High electrical reliability
Easy to check

Light weight if safe-arm
not required

Safety precautions required

More sensitive to high
temperature and shock
unless properly protected
(contains primary
explosive)

Radiation effects unknown

Low temperature effects
unknown
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Access Hatches

Several methods for securing spacecraft access hatches have been
evaluated. One method involves ingress and emergency egress through a 7.7
square-foot door. This approach requires a quick opening latch mechanism
to secure and seal the door during the mission. The proposed mechanism
weighs 40 pounds in addition to the weight of the door. The question of
whether the crew could handle this mass during an emergency has been
raised. The second method involves ingress through a 7.7 square-foot door
located in turn in a 21 square-foot blow-out panel that would be employed for
emergency egress. Latching of the ingress door would be accomplished
through cam-lock levers, worm gears, mechanical actuators, and other
securing devices. Each of these approaches is satisfactory from a
reliability viewpoint.

Parachute Deployment

A reliability analysis was made to evaluate three different methods of
deploying the cluster of three main parachutes. The first method considered
was that proposed by Northrop Ventura. It consisted of two identical drogue
parachutes, with each having the capability of deploying the cluster. At
S&ID's request additional studies were performed by Northrop Ventura. A
second method studied was the same as the first, except that only one drogue
was used; a third method considered included no drogue, the main parachute
being deployed individually by the use of mortars.

The results of the evaluation were as follows:

If a drogue system is to be used, two drogues must be employed
to provide the redundancy required to meet the system reliability
requirements,

The proposed method of deploying the main cluster by use of a
single drogue fails to meet the system-reliability requirement
because the deployment of the whole cluster is dependent on the
single action of the drogue uncovering and pulling out all three
parachutes.,

A drogue is desirable for two reasons. It provides stability, and
permits a lighter main-parachute construction.

Individual deployment of the main parachute using mortars provides
the redundancy required to meet system requirements.

- 96 -
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‘ Considering this information, the Design Review Board decision was
to develop a system consisting of two drogues supplemented by individual
deployment of the three main parachutes.

Boilerplate No 6 Sequencer

The three following sequencing systems for Boilerplate 6 were evaluated
for reliability.

Two parallel automatic systems with radio-command override
for several functions.

A single power source supplying redundant components.
An automatic system in parallel with a radio command system.

Based on the following descriptions and analyses of the three systems,
it was recommended that the first system be utilized in BP 6.

System 1 - Two Parallel Automatic Systems With Radio-Command Override
for Several Functions

. AUTOMATIC AUTOMATIC
POWER POWER
INSTRUMENTATION — PYRO
SOURCE BUS SOURCE BUS
}— Success
AUTOMATIC AUTOMATIC
POWER POWER
S OURCE :; IJETRUMENTATION SOURCE :Lrgo —

The reliability of System 1 is 0.99999, using standard-failure-rate data.
The numerical analysis does not include the power sources but does include
the EBW firing units. The system is completely redundant except for the
radio-command receiver which operates from one of the power sources.
Maintaining parallel circuits eliminates the majority of electrical circuit
interactions.
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System 2 - Single Power Source Supplying Redundant Components.

AUTOMATIC INSTRUMENTATION BUS AUTOMATIC PYRO BUS
COMPONENT COMPONENT
__| Power POWER
SOURCE SOURCE SUCCESS
COMPONENT COMPONENT

System 2 has two power sources, although both are required for
success. A detailed schematic of the system was not available, therefore, a
qualitative analysis was conducted.

A series of duplicate components is considered more reliable than
parallel systems of series components, because of the allowable paths for
success. Since the reliability of System 1 was quite high, it is assumed that
lack of duplicate power sources would make this system inferior from a
reliability standpoint. A short circuit in the system would result in complete .
system failure and possibly cause a fire in the vehicle being tested.

System 3 - Automatic System In Parallel With a Radio-Command System

RADIO-CONTROL
—] POWER INSTRUMENTATION RADIO-CONTROL
PYRO BUS
BUS
| SUCCESS

AUTOMATIC
—1  POWER INSTRUMENTATION AUTOMATIC

BUS PYRO BUS

System 3 is not considered as reliable as System 1, because System 1
has parallel automatic systems with radio-controlled override capability for
those functions (in both systems) considered feasible for decision by a ground
crew, System 3 does not contain the redundancy of System 1, and it is
considered doubtful that the ground crew could make the proper decisions
at the proper time for all of the functions,
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. Since no schematic was available for System 3, no numerical analysis
was made for it.

Comparative Earth-Landing Sub-Systems

A reliability evaluation was made of comparative earth landing systems.
One trade-off was between parachute and paraglider; a second trade-off was
between a launch escape system and ejection seats with personal parachutes.
The reliability logic diagrams used in the evaluation along with numerical
results are shown in Figure 20.

The results of the evaluation are as follows, the systems evaluated
being listed in order of descending reliability:

Separately deployable parachute cluster, launch escape system and
personal parachutes for crew.

Paraglider, launch escape system and personal parachutes for
crew.

Separately deployable parachute cluster and ejection seats for
crew.,

‘ Paraglider and ejection seats for crew.
Facts and Assumptions Used in Evaluation

High-Altitude~-Recovery Considerations Probability-of-deployment of
the parachute cluster is based on the probability that at least two of the three
chutes open. Reliability of each chute (0.998) is based on Mercury data and
Northrop Ventura estimates of present state-of-the-art. The same value
(0.998) is used for each drogue chute.

The value (0.9995) assigned to deployment of the Paraglider is based on
the positive actuation provided by inflation of the booms and configuration
control afforded by sequenced release.

The values selected for the landing hazard factors reflect an analysis
of 1,388, 852 live jumps from 1951to 1957 suing the T-10 extended-skirt troop
parachute. During this period 21 fatalities occurred due to local landing
hazards rather than parachute failure. The higher number assigned to the
paraglider is based on the fact that it can be maneuvered to miss local
ground hazards.

The principle difference in complexity between the Paraglider and the
‘ parachute cluster lies in the flight control subsystem. The flight control

. -99 - OONFDENT—
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subsystem in the paraglider configuration is not needed in an earth landing
system that uses parachutes. In the event of a failure of the paraglider flight
control subsystem, the Paraglider would return to an attitude which provides
a landing equivalent to the parachute (no ability to avoid local hazards). The
envisioned control subsystem would be similar to the highly reliable systems
used in aircraft with the exception that air motors would be utilized to provide
power boost. The system would also include control cables, pulleys,
capstans, and a side arm controller,

The other subsystems would be comparable to each other in complexity
and reliability. The drogue system and electrical sequencing systems would
be equivalent. The Paraglider landing gear subsystem would be directly
traded off with the impact attenuation (shock struts) subsystem. The
inflation system, either blow-down or gas generator, would be traded off with
the extraction subsystem of the parachute.

Pad-Abort-Recovery Considerations. A pad abort occurs on 2.2 percent
of missions.

Without a launch escape system, the command module is not recover-
able upon a pad abort.

The probability of the crew surviving a pad abort by use of ejection
seats is several orders of magnitude lower than the probability for other
elements in the system. Three values (0.90, 0.95 and 0.99) are given to
show the effect on the probability of crew survival in the range of values
considered applicable. The range selected is based on the number of
fatalities that have actually occurred in airplanes equipped with ejection seats
and on the hazards inherent in the use of low trajectory ejection seats in an
area such as the pad during an abort under emergency conditions.

Using the launch escape system, the assumption is made that, during
pad abort, there is not sufficient time to utilize man's override capability
in the sequencing system or the redundant drogue.

The values used for personal parachute (0.9998) and ejection seat
(0.999) reliabilities are based on historical data. It should be noted that
varying these values between the two extremes shown has a very insignificant
effect on the probability of recovering the crew since the chutes are only used
in the event of a system failure.

Failure-Mode Analysis

A failure-mode analysis was made of the earth landing subsystem. A
schematic block diagram of the system is shown in Figure 21. One half of
the parallel channel sequencer is shown as System A; System B is identical
to provide redundancy.
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Earth Landing Subsystem Failure Mode Analysis

Effect Upon

Mission Crew

System A Component*|] Failure Mode Probable Cause |Success |Survival Remarks

Power source No power Failed component None None Redundant - complete failure in
system A; system B would be
available.

Arming switch Does not close | Failed component None None Redundant - system A would not
arm; system B could still
function normally.

Time delay no. 1 Does not close | Failed component None None Redundant - in system A, power
would be supplied to 50K baro’s
with no bad effects; system B
could still function normally.

50, 000 -feet Both switches ]| Failed component None None Redundant - manual override

barometric switches in h»50K could be used in system A;
system B could still be operating
normally.

One switch in Failed component None None Redundant - manual override

h >50K, other
normal

could be used in system A;
system B would still be operating
normally.

Both switches

Failed component

Depends on

As soon as time delay no. 1

in h¢ 50K altitude closed, forward heat shield
would be released.
One switch in | Failed component| None None |Redundant - sequencer in system
h<&50K, other A will still function normally
normal because of series connection;
system B would be operating
normally.
One switch in | Failed component None None Redundant - manual override
mid-position, could be used in system A;
other normal system B would operate
normally.
Forward heat shield No gas Failed component None None Redundant - system A would fail
gas generator and generated to release heat shield; system B
cable cutter would still operate and release
heat shield.
Heat shield release Does not Bind Loss Loss Forward heat shield would not be
cable release released; drogues and main
chutes could not be deployed;
Heat shield latch Does not Failed component Loss Loss crew could survive by use ot
mechanism release personal parachutes.
Heat shield Does not Fused to Loss Loss
separate from | command module
command
modile
Time delay no. 3 Does not close| Failed component None None Redundant - in system A, power
would be supplied to 40K baro's
with no bad effects; system B
would still operate normally.
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Effect Upon

Mission Crew
System A Component*| Failure Mode Probable Cause |Success | Survival Remarks
Pilot chute Not deployed Mortar failure None None Pilot chute deploys main chute.

Main chute

Not deployed

Failed component

Depends on
number that

Two of the three main chutes will
support the command module.

fail Crew would probably survive
with one.
Time delay no. 5 Does not Failed component Loss Loss At same time main chutes are
operate being deployed, lower heat shield
is being released; this could
cause the chutes to fail by
overstressing. Crew could
survive by use of personal
parachutes.
Aft heat shield gas No gas Failed component None None Redundant - system A would fail
generator and cable generated to release heat shield; system B
cutter could still operate and release
heat shield.
Heat shield release Does not Bind Depends on Lower heat shield would not be
cable release velocity of released, therefore would not be
impact in position to absorb impact upon
Heat shield latch Does not Failed component landing. Crew survival enhanced
mechanism release due to couch attenuation system,
Heat shield Does not Fused to
separate from | command module
command
module
Time delay no. 6 Does not Failed component None None Impact switch would be armed at
operate same time chutes were being
deployed. This would.not be
detrimental to system operation,
Impact switch Does not arm | Failed component None None Redundant - system A would not
be able to release main chutes;
system B could still arm switch.
Time delay no. 7 Does not Failed component None None Redundant - system A unable to
operate release main chutes; system B
could still operate and release
chutes.
Pilot switch — main Does not Failed component None None Main chutes would fail to release
chute release operate or man on impact.
Main chute disconnect] Does not Failed component None None Main chutes would fail to release
release from command module.
Pilot switch — sofar Does not Failed component None None Sofar and dye marker not ejected.
and dye operate or man

*System A is identical to system B.
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Table 19. Earth Landing Subsystem Failure Mode Analysis (Continued)

Effect Upon

Mission Crew
System A Component*| Failure Mode | Probable Cause |Success | Survival Remarks
40, 000 -feet Both switches | Failed component None None Redundant - manual override
barometric switches in h»40K could be used in system A,
system B would still operate
normally,
One switch in | Failed component None None Redundant - manual override
h >40K, other could be used in system A;
normal system B would still operate
normally,
Both switches | Failed component| Loss Loss {As soon as time-delay no. 3
in h<40K closed, drogue deployment would
be initiated, but it would be
halted because of the heat shield
not being released at this time.
Crew could survive by use of
personal parachutes.
One switch in | Failed component None None Redundant - sequencer in system
h<€ 40K, other A will still function normally
normal because of series connection;
system B would still operate
normally,
One switch in | Failed component None None Redundant - manual override
mid-position, could be used in system A;
other normal system B still operating
normally.
Drogue no. 1 igniter Does not Failed component| None None Redundant - drogue no. 2 could
operate be deployed.
Drogue no. 1 Not deployed Does not open, None "None Redundant - drogue no. 2 could
rips, etc. be deployed.
Time delay no. 4 Does not Failed component None None Redundant - power would be
operate supplied to. 15K baro's in
system A; switch B still
operating normally.
15, 000-feet Both switches | Failed component None None Redundant - manual override
barometric switches in h>15K could be used in system A;
system B operating normally.
One switch in | Failed component None None Redundant - manual override
h>15K, other could be used in system A;
normal systemn B would still operate
normally.
Both switches | Failed component Loss Loss As soon as time delay no. 4
in h¢ 15K closed, the main chutes would
try to be deployed but would be
unable to because of the heat
shield not being released. Crew
could survive by use of personal
parachutes.
One switch in | Failed component None None Redundant - manual override
mid-position, could be used in system A;
other normal system B still operating normal,
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The analysis which follows (Table 19) is for normal re-entry and does .
not consider abort conditions. Failures of individual components and the
probable cause of the failures are identified. The effects of the failure upon
the success of the mission and the survival of the crew is noted, and the
nature of the system's redundancy and the resulting situation are explained.

QUALIFICATION-RELIABILITY OPERATIONS

Test Models

Methods are presently being developed to determine the reliability of
one-shot, high-cost devices when only small sample sizes can be justified
for testing. The technique is based upon stress-versus-strength and
performance-margin concepts, and can yield high confidence statements about
the demonstrated reliability.

The stress-versus-strength techhique is also being evaluated to define
its applicability to the qualification-reliability demonstration program for
other devices, including structures, heat shields, electro-mechanical, and
electronic equipment.

A model is being established to analytically define required equipment
test-time (in a particular combination of environments) as a function of the
expected mission duration and the required reliability and confidence. This ‘
model will be employed to calculate the test time necessary to demonstrate
reliability at a specified confidence and at the end of qualification-testing.
It will also be used to show the amount of additional test time necessary to
increase the statistical confidence to any desired value. The actual
environmental tests and the sequence of exposures will closely simulate the
Apollo lunar landing and earth return mission.

Flight-Test Operations Support

Reliability engineering support requirements for each field test site
have been prepared. Included were office space, equipment, tear-down-
analysis laboratory space, and the test equipment required in each area.
Preliminary work statements and manpower estimates required to conduct
this activity have been completed.

Procedure For Evaluation Of Commercial Test Laboratories

In a joint effort with the S-II Reliability Test group, a document is being
prepared to define the procedures to be employed and the reliability
requirements for evaluation of commercial test laboratories. Information
from surveys conducted by either Apollo or Saturn personnel will be shared
and recorded in 2 common document to preclude duplication of effort. ‘

- 106 - =SONSDENTR

SID 62-557-2




NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

RN

’ Test Accounting System

A plan has been prepared to identify all development, qualification, and
reliability tests currently proposed by S&ID and Apollo subcontractors for
spacecraft, subsystems, components, and GSE. Information gained through
the identified tests will be employed to determine the adequacy of testing,
number of hardware items to be tested, and the proposed schedules for
completion of qualification test requirements., Test accounting forms,
describing the number and types of tests currently planned for Apollo
subcontractors, have been completed. When tabulations are completed, the
information will be employed to determine the completeness (and any
duplication) or proposed test programs to meet reliability demonstration
objectives. Test accounting will be presented in the revised Qualification.

Qualification Status Report

Qualification status data has been compiled from information acquired
from engineering and test groups. This information has been compiled into
the contractually required Qualification Status Report and submitted to NASA.
Because of the limited information available at this time, the list can only
reflect schedule status to the major component level.

’ NASA/NAA Documentation Review Meeting

A review of the Apollo Reliability Test Plan was conducted on May 17
and 18 at NASA Headquarters, Washington, D.C. Through mutual
agreement, the test plan is to be revised to place further emphasis upon
off-limit, parameter-variability, life, and mission-profile simulation tests.
Although these were contained in the previous issue of the test plan, only
minor treatment was afforded each. Additional reorientation is required to
show employment of factorial and other experimental designs as exploratory
tests in the event that difficulties are encountered during qualification or
reliability testing. The revised plan will define minimum test programs for
each of the spacecraft subsystems.

Analysis Aid

To facilitate the retrieval, recording and processing of Apollo data,
the following statistical programs have been established and are available
for immediate use.

IBM 7090 Programs
Histogram Plotting on Cathode Ray Tube (CRT)

Process Evaluation (CRT)
‘ Mean (X) and Range (R) Charting
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Percent Defective Charting ‘
Mean and Standard Deviation Charting

Mean Test for Singly Classified Multiple Groups

Analysis of Variance (ANOVA) Factorial Design

Chi-Square Test of Independence

Life-Curve Identification

Burn-In Time Determination

Mean-Time-Between-Failures Plotting (CRT)

Linear Correlation of Data and Transforms (CRT)
Correlation Coefficients of First and Second Degree Curves
Parabolic Correlations (CRT)

Semi-Log Parabolic Correlation

Cubic Correlation (CRT)

Response Surface Plotting, Two Independent Variables (CRT)
Response Surface Calculations, Two Independent Variables
Response Surface Calculations, Three Independent Variables
Response Surface Calculations, Four Independent Variables
Attribute Correlations

Hypergeometric Sampling Plan Calculations

Queuing Problem Calculations

Recomp II Programs

Linear Programming Simplex Method '

Matrix Inversion and Solution of Simultaneous Equations

Determinant Evaluation

Matrix Inversion (42 x 42 inches)

Simple Correlation Coefficients

Beta Function Program

Gamma Function

Two-way Analysis of Variance

Mean, Variances, Standard Errors, and Confidence Intervals

Multiple Linear Regression and Correlation Analysis

Transportation Problem

Least-Squares Curve Fit for the Exponential, Logarithmic and Power
Function

A Monte Carlo "Proof"

Chebyshev Ploynomial Economization

Computer Methods And Data Documentation

A computer-oriented reliability program utilizing IBM 7090 and
RECOMP-II computers, is being developed to support the Apollo Reliability
project. This program encompasses description and comparison computer
methods for circuit analysis and other allied studies.

®
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‘ Information of electronic and electro-mechanical designs is presently
being developed. The computer output data will be used to evaluate the
adequacy of design and support reliability design reviews.

A special study in support of the design of ground support equipment
(GSE) is in progress. Participation in other program studies requiring
computer techniques is being investigated.

To standardize reliability circuit-analysis studies and assure that
essential information is consistently recorded, a general format for computer
circuit analysis reporting has been developed. The required contents such as
schematics, drawing numbers, parts lists, equivalent circuit diagrams,
computer program printouts, and presentation of results are delineated. It
is intended that S&ID studies, as well as subcontractor studies, follow this
format.

Mathematical Reliability Model

A mathematical reliability model based upon Monte Carlo techniques
has been developed as a reliability system analysis aid., Although the
accuracy of the more detailed logic model cannot be achieved by employing
this approach, simplicity in use and greater flexibility are the major

. advantages. As an example, only minor changes in the input data will be
required to account for configuration changes. Print-outs will include, in
addition to mission success and crew safety numerics, probability statements
regarding the influence of any component in aborting a mission or inducing a
safety hazard,

Use of the mathematical reliability model will also permit an
evaluation of the effects on the spacecraft of variable reliability in a
component, and will provide information for on-board maintenance studies,
including those limitations imposed by a finite number of on-board spares.

SUBCONTRACTOR COORDINATION

The S&ID has initiated regularly scheduled monthly reliability meetings
with all subcontractors. The purpose of these meetings is to review
reliability progress at scheduled intervals, establish lines of communications
at the working level, and consider possible solutions to various reliability
problems.

Material Traceability and Configuration Accountability

In support of Apollo requirements, effort has been expended during this
. report period to develop a program controlling material traceability and
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configuration accountability. The significant features of the program
(Figure 22) are aimed at accomplishing the following objectives:

Material Traceability

This deals with tracing and identifying material from the time of
original procurement through all stages of fabrication until it appears in the
end item. It will also trace any material identifiable by part number and
serial or original manufacturer's lot number, to the assembly part number,
and finally to the serial number of the spacecraft or end item of GSE in which
it is installed,

Configuration Accountability

This deals with correlating actual configuration accomplished during
manufacturing and assembly with the original paper configuration established
by design engineering and engineering-configuration control. Its purpose is
to be able to report on actual configuration as to actual part numbers and lot
numbers used in each identifiable assembly,

The flow diagram (Figure 23) shows the mechanical functions and the
responsibilities of the various organizations participating in the effort to
control material traceability and configuration accountability system will be .
presented in a subsequent revision of SID 62-203, Apollo Reliability
Program Plan.

Interservice Data Exchange Program (IDEP)

S&ID is now participating in the Interservice Data Exchange Program
(IDEP). This program has been established to facilitate the interchange of
reliability data among government agencies and contractors engaged in the
development and manufacture of ballistic missiles and space vehicles. Under
this program, each participating missile and space project contractor will
submit copies of every test report within selected categories to the IDEP Data
Distribution Center (DDC) where they will be microfilmed. The microfilms
of the complete report, attached to a summary card, will be automatically
distributed to all designated participating contractors and agencies which have
previously expressed an interest in that particular subject. Classified
information will not be transmitted through IDEP.

An average participating contractor will receive approximately seventy
times as much data as contributed. Although this data may not always be
precisely applicable to required performance and environment, IDEP will
make it possible to examine test data developed and generated by other
contractors which could reduce, eliminate, or modify our own testing. .
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Figure 22,

Engineering Original
Configuration

Actual Configuration
Materiai Lot Identification
Parametric Data
Operating Time

Change Verification Data
Non-Conformance Records
Operating Time

Other Configuration and/
or Traceability Data

Area Inputs
® AMR
® Tulsa
® efc.

Functional Inputs
® Supplier Quality History
@ Parts Replacement Request Data
® Material Review Data
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SEPARATE PARTS USAGE RECORD

System responsibility:

Standards Engineering and Design Engineering.
SPUR is an automation program on bill-of-
materials and next-assembly information taken
from engineering drawings .

AUTOMATICALLY PROCESSED WIRE LISTS
These lists are processed in conjunction
with the SPUR program for the blue prints
concerned with electrical or electronic
wiring .,

FABRICATION-ASSEMBLY-INSPECTION=-RECORD
System responsibility:

Manufacturing and Quality Control . This

is an automation program on the planning=

ticket and inspection-records requirements.

TOTAL-RECORDS-ACCESS CONTROL

System Responsibility: Data Analysis
Engineering. This is a data integration
program to accomplish the task of utilizing
(1) engineering configuration information
from the SPUR program, (2) actual configura-
tion and material traceability information
from the FAIR program, and (3) other normal
data inputs to provide the many reports
required on:

Material Traceability
Configuration Accountability
Non-Conformance Data
Operating Time

Parametric Data

Such reports are presently being formulated
to firm committments as a result of S&ID
departmental needs as well as zontractual
requirements on the Apollo.

Material Traceability and Configuration Accountability
Flow Diagram

o
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NONFLIGHT HARDWARE

SPECIFICATION

|| DEVELOPMENT, QUALIFICATION,

F

DATA

APPLICATION APPROVAL TESTS

RELIABILITY, SPACE CRAFT GROUND
TESTS

PRIOR USAGE
DATA

CRITERIA

FLIGHT HARDWARE

DATA
CENTER

RELIABILITY TESTS

ACCEPTANCE TESTS

FTTT

GO

—————

PRELAUNCH, LAUNCH AND
POSTLAUNCH OPERATIONS

POSSIBLE COMPONENT
NO-GO

Figure 23,

Typical Data Accumulation and Flow
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MOTIVATION AND TRAINING

General indoctrination briefings on Apollo for new employees have
been conducted during the past few months and are continuing on a required
basis. The initial presentation of Computer Methods of Electronic Design
Analysis began 17 April 1962, with a second presentation of the same course
scheduled to commence in mid-July. Courses dealing with reliability
mathematics as a part of reliability indoctrination (Course No. 5) have been
initiated with various engineers from the reliability and design groups
participating.

In order to better acquaint subcontractors with Minuteman parts, their
application to Apollo, and their limitations, a symposium has been planned
to be held at NAA/S&ID in mid-July. The symposium will be of one to two
days duration and will include all subcontractors who are involved in the
selection of electronic parts.

The following is a list of courses to be presented in support of the
Apollo program. These courses generally are designed for adaptation to
either detailed instruction or briefings.

General Apollo Indoctrination

Apollo Reliability Program Plan

Computer Methods of Electronic Design Analysis

Minuteman Standards and Parts with Application to Apollo

Reliability Indoctrination for Reliability Engineers

Design Ramifications in Reliability Apportionment for Reliability
Engineers

Design Ramifications in Reliability Apportionment for Design
Engineers

Qualification-Reliability Test Plan

Malfunction Reporting, Analysis, and Corrective Action

The Role of Manufacturing in Attaining Reliability

Reliability for the Apollo Buyer

Apollo Reliability Indoctrination and Motivation for Supplies

PREAWARD SURVEYS

During this reporting period the following preaward surveys were
performed:
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Data Processing Equipment

Beckman Instrument Corporation

The Bendix Corporation,
Pacific Division

Consolidated Electric

Electronie Engineering Corporation
(EECO) of California

Electro Mechanical Research,
Corporation

Radiation, Inc.

SPACE and INFORMATION SYSTEMS DIVISION

Fullerton, California

North Hollywood, California

Monrovia, California

Santa Ana, California
Sarasota, Florida

Melburn, Florida

Telecommunication System (Telemetry, Antenna, Radome)

Airborne Instrument Laboratories

Brunswick Corporation Defense
Division

Canoga Electronics

Darn & Margolin
Electronics Specifications
ITT Federal Laboratories
Melpar, Incorporation
McDonnell Aircraft
Norair

Rantel Corporation

Transco Products
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Long Island, New York

Marion, Virginia

Van Nuys, California
Liong Island, New York
Los Angeles, California
Nutley, New Jersey

Falls Church, Virginia

St. Louis, Missouri
Hawthorne, California
Calabasas, California

Los Angeles, California
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Table 20. Procurement Specification Contributions,

1 April through 30 June 1962

Spec. No. Title Date

MC 2840013 Valve, Solenoid Actuated, Nitrogen Tetroxide April 13
Feed Control

MC 282-0005 Pressure Vessel, Helium (48 ~-inch Nominal ID) April 11

MC 282-0002 Pressure Vessel, Helium (10-inch Nominal April 11
Diameter)

MC 282-0007 Tank, UDMH/Hydrazine - Positive Expulsion April 16
(Cylindrical)

MC 282-0006 Tank, Nitrogen Tetroxide - Positive Expulsion April 16
(Cylindrical)

MC 282-0008 Tank, UDMH/Hydrazine-Positive Expulsion April 16
(16-1/4 nominal diameter)

MC 901-0008 System, Hypergolic Propellant Utilization May 16

MC 284-0020 Service-Module Propulsion-Pressurization May 23
System

MC 284-0022 Service-Module Propulsion-Pressurization May 23
System

MC 286-0005 Reaction Control Oxidizer-Feed System May 25

MC 286-0003 Reaction Control Fuel-Feed System May 25

MC 286-0009 Rocket Engine, Apollo Service Module May 29
Propulsion System

MC 273-0018 Coupling, Nitrogen Tetroxide Tank, Fill and June 14
Drain Disconnect

MC 282-0004 Tank, Nitrogen Tetroxide, Positive Expulsion June 28
(Spherical)

MC 364-0001 Apollo Command Module Heat Shield Ablative May 19
Panels

MC 901-0012 Stabilization and Control Subsystem June 14
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SUBCONTRACTOR REPORTS REVIEWED

Table 21. Subcontractor Reports Reviewed by Reliability Engineers
Report No. Subject Source
SS-1000-R System Specifications Environmental AiResearch
Control Subsystem
5S-1001-R Test Plan AiResearch
S5-1002-R GSE Performance and Interface AiResearch
Specifications
SS-1007-R Maintenance Plan ECS and Associated AiResearch
GSE
SS-1008-R Revised Manufacturing Plan AiResearch
S5-1010-R Quality Control Plan AiResearch
SS5-1014-R ECS Design Criteria Specification AiResearch
SS-1020-R Program Plan ECS AiResearch
AR 101-3 Monthly Progress Report, 15 March Collins Radio
1962 to 15 April 1962
AR 101-4 Monthly Progress Report for the Collins Radio
Apollo Communications and
Instrumentation Subsystem Covering
15 April 1962 to 15 May 1962
AR 103-2 Preliminary System Specification for Collins Radio
the Apollo Telecommunications
System
AR 105-2 GSE Performance and Interface Collins Radio
Specification
AR 107-2 Test Plan for the Apollo Telecom- Collins Radio

munications System
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‘ Table 21. Subcontractor Reports Reviewed by Reliability Engineers (Cont)
Report No. Subject Source
AR 108-2 Part I of the Reliability Program Plan Collins Radio
for Apollo Telecommunications System

AR 110-2 Inspection, Measuring and Test Collins Radio
Equipment Procedures

AR 111-2 Program Plan for Apollo Communica- Collins Radio
tions and Data Subsystem

AR 112-2 Manufacturing Plan Collins Radio

AR 113-1 Part II of the Reliability Program Plan | Collins Radio
for Apollo Telecommunications System

AR 118-2 Quality Control Plan for the Apollo Collins Radio
Communications and Instrumentation
Subsystem, 4 June 1962

. AR 120-1 Quarterly Progress Report for the Collins Radio

Apollo Telecommunications System

AR 121-1 Quarterly Status Report Collins Radio

AR 123-1 Preliminary Equipment Specification Collins Radio
for the VHF FM Transmitter

AR 124-1 Preliminary Equipment Specification Collins Radio
for the VHF Recovery Beacon

AR 125-1 Preliminary Equipment Specification Collins Radio
for the VHF Antenna Switch

AR 126-1 Preliminary Equipment Specification Collins Radio
for the DSIF Power Amplifier

AR 127-1 Preliminary Equipment Specification Collins Radio
for the VHF AM Transceiver

AR 128-1 Preliminary Equipment Specification Collins Radio
for the C-Band Radar Transponder
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Table 21. Subcontractor Reports Reviewed by Reliability Engineers (Cont) .
Report No. Subject Source
AR 129-1 Preliminary Equipment Specification Collins Radio

for the Multiplexer

AR 130-1 Preliminary Equipment Specification Collins Radio
for the DSIF Transponder

AR 131-1 Preliminary Equipment Specification Collins Radio
for the Telemetry System

AR 132-1 Preliminary Equipment Specification Collins Radio
for the HF Recovery Transceiver

AR 133-1 Preliminary Equipment Specification Collins Radio
for Controls and Displays

AR 134-1 Preliminary Equipment Specification Collins Radio
for the Audio Center

AR 135-1 Preliminary Equipment Specification Collins Radio
for the Clock

AR 136-1 Preliminary Equipment Specification Collins Radio
for the Instrument Recorder

AR 136-2 Equipment Specification for the Data Collins Radio
Storage Equipment of the Apollo
Communications and Data Subsystem
25 June 1962

AR 137-1 Preliminary Equipment Specification Collins Radio
for the Discone Antenna

AR 139-1 Preliminary Equipment Specification Collins Radio
VHF FM Transmitter Unit Bench-Test
Set of the Apollo Telecommunications
System

AR 140-1 Preliminary Equipment Specifications Collins Radio
for the HF Recovery Transceiver Unit
Bench-Test Set of the Apollo Telecom-
munications Systems
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Table 21. Subcontractor Reports Reviewed by Reliability Engineers (Cont)

Report No. Subject Source

AR 141-1 Preliminary Equipment Specification Collins Radio
for the CB and Radar Transponder
Unit Bench Test Set of the Apollo
Telecommunications System

AR 142-1 Preliminary Equipment Specification Collins Radio
for the Audio Center Unit Bench-Test
Set of the Apollo Telecommunications
System

AR 143-1 Preliminary Equipment Specification Collins Radio
for the VHF AM Transceiver Unit
Bench-Test Set of the Apollo Tele-
communications System

AR 144-1 Preliminary Equipment Specification Collins Radio
for the Deep-Space Instrumentation
Facility Unit Bench-Test Set of the
Apollo Telecommunications System

AR 146-1 Preliminary Equipment Specifications Collins Radio
for the Aide Units of the Apollo Tele-
communications System

AR 147-1 Preliminary Equipment Specifications Collins Radio
for the Discone Antenna Unit Bench-
Test Set of the Apollo Telecommunica-
tions System

AR 148-1 Preliminary Equipment Specifications Collins Radio
for the Multiplexer Unit Bench-Test
Set of the Apollo Telecommunications
System

AR 149-1 Preliminary Equipment Specifications Collins Radio- - | -
for the System Test Equipment of the
Apollo Telecommunications System

AR 151-1 Interim Report on the Status of Collins Radio
Modulation Study for Project Apollo
Deep Space Communications
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Table 21. Subcontractor Reports Reviewed by Reliability Engineers (Cont)
Report No. Subject Source
W 3686 WA Vacuum Testing Requirements Collins Radio
588-M-1 Reliability Program Lockheed
588-M-4 Design Criteria Specification Launch Lockheed
Escape Motor
588-M-5 Preliminary Equipment Specification Liockheed
Launch Escape Motor
588-M-6 Test Plan Lockheed
588-M-8 Lockheed Propulsion Corporation Lockheed
Qualification Reliability Test Plan on
Launch Escape Motor
588-M-11 Quality Control Plan Loockheed
588-M~13 End Item Acceptance Test Plan Lockheed
A-1002 Program Plan Marquardt
A-1007 Test Plan Marquardt
A-1008 End Item Acceptance Test Plan Marquardt
A62750A1(1) | Criteria Specifications Minneapolis -
Honeywell
A62751B(2) Facilities Plan Stability and Control Minneapolis-
System Honeywell
A62751H1(1) | End Item Test Plan Minneapolis -
Honeywell
A62T60A(1) Flight Crew Performance Specification | Minneapolis-
Honeywell
A62760A3(1) | Life System Display and Control Minneapolis -
"Provisions Honeywell
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Table 21. Subcontractor Reports Reviewed by Reliability Engineers (Cont)
Report No. Subject \ Source
A62768B(2) Quality Control Plan-Stability and Minneapolis -
Control System Honeywell
2518 GSE Specification Northrop Ventura
2519 A Design Criteria Specification Northrop Ventura
2523 A Revised Test Plan Northrop Ventura
2523 B Revised Test Plan Northrop Ventura
2526 Reliability Demonstration Plan Northrop Ventura
2529 End Item Acceptance Test Plan Northrop Ventura
2531 Northrop Ventura Quality Control Plan | Northrop Ventura
Earth Landing System
59303 Equipment Specification Northrop Ventura
PWA 2054 Test Plan Pratt and Whitney
PWA 2055 Reliability Program Plan Pratt and Whitney
PWA 2057 Reliability Test Plan Pratt and Whitney
PWA 2059 Quality Control Plan Pratt and Whitney
PWA 2079 End Item Test Plan Pratt and Whitney
A 004 Test Plan Thiokol
A 006 Reliability Assurance Program Plan Thiokol
A0T1 — — Materials, Parts and Process- - Thiokol- - - -
Specifications
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PROPOSALS REVIEWED

Table 22. Proposals Reviewed by Reliability Personnel

Number Subject Source

1867 Apollo R & D Telemetry Antenna System; | Pantec
Section II Management Proposal,
Section III Technical Proposal

1877 Apollo R & D Beacon Antenna System; Pantec
Section II Management Proposal,
Section III Technical Proposal

J-2355 Apollo R & D Beacon Antenna System; Airborne Instruments

Lab.
Section III Technical Proposal

J-2356 Apollo Recovery Antenna System; Airborne Instruments
Lab.
Section II Management Proposal,

Section III Technical Proposal

J-2357 Apollo R & D Telemetry Antenna System; | Airborne Instruments

Lab.
Section II Management Proposal,
Section III Technical Proposal
N 30026 | Apollo Recovery Antenna System; General Electric Co.

Section II Management Proposal,

Section III Technical Proposal
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Table 22. Proposals Reviewed by Reliability Personnel

Number Subject Source

N-30027 | Apollo R & D Telemetry Antenna System;| General Electric Co.
Section II Management Proposal,
Section III Technical Proposal

TP 1056 | Apollo R & D Beacon Antenna System; Transco
Section II Management Proposal,

Section III Technical Proposal

TRIPS AND MEE TINGS

Table 23. Trips and Meetings, April through June 1962

Discussion Participants Date

Technical coordination meeting | Minneapolis-Honeywell April 3
NAA

Reliability requirements for Pratt and Whitney April 5 - 6

the Apollo fuel cell NAA

Environmental control system NASA April 10
NAA/S&ID

Reliability program plan AiResearch April 11
NAA/S&ID

Discuss analysis, design and McDonnell Aircraft Corp April 16

installation problems NAA/S&ID

encountered on Project

Mercury

Relay versus solid state Rocketdyne April 17

electrical sequencer design NAA/S&ID
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Table 23. Trips and Meetings, April through June 1962 (Cont)
Discussion Participants Date
Reliability apportionment to NASA April 18
guidance and navigation NAA/S&ID
subsystem MIT
GSE checkout concept for Minneapolis-Honeywell April 19 -21
boilerplate and prototype NAA/S&ID
equipment
On-site analysis of personal AVCO-RAD April 29 -
facilities, test and tooling NAA/S&ID May 2
equipment
Review existing Mercury McDonnell Aircraft Corp April 30 -
reliability data NAA/S&ID May 2
Guidance reliability meeting NASA May 1 - 10
NAA/S&ID
MIT
Test plan and statistical testing { Collins Radio May 3
NAA/S&ID
GSE checkout concept for Collins Radio May 15 - 16
bench maintenance equipment NAA/S&ID
Review of Apollo qualification- NASA May 17 - 18
reliability test plan NAA/S&ID
Bench maintenance and Northrop Ventura May 25
checkout equipment NAA/S&ID
reliability criteria
GSE checkout and reliability Aerojet May 25
requirements NAA/S&ID
Prototype stabilization and Minneapolis -Honeywell May 28 - 29
control system checkout NAA/S&ID
concept
Project Apollo environmental AiResearch May 29
control system reliability NAA/S&ID
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. Table 23,

Trips and Meetings, April through June 1962 (Cont)

Discussion Participants Date
GSE requirements ' Marquardt June 5
NAA/S&ID
Motor case design Thiokol June 7 - 8
NAA/S&ID
GSE bench maintenance AiResearch June 12
concept NAA/S&ID
Reliability requirements for Minneapolis -Honeywell June 19,
GSE NAA/S&ID 21 - 22
S-II reliability program and Marshall Space Center June 24 - 29
Apollo presentation NASA
NAA/S&ID
Apollo GSE general reliability AiResearch June 25
‘ requirements NAA/S&ID
Apollo reliability plan NASA June 25
NAA/S&ID
Apollo reliability plan NASA June 25 - 26
NAA/S&ID
Review of qualification- NASA June 26
reliability test plan NAA/S&ID
Definitive contract firm-cost AVCO-RAD June 27 - 29
proposal field analysis NAA/S&ID
Discuss system analysis NASA ~ June 27
techniques and S&ID's NAA/S&ID
reliability mathematical
models
General reliability criteria Northrop Ventura June 28
for prototype stabilization NAA/S&ID
control and GSE equipment
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II. PLANNED ACTIVITIES

During the July through September 1962 quarter, the following studies
will be conducted.

SPACECRAFT RELIABILITY

During the next quarter, spacecraft reliability studies will be expanded
to consider other systems of the total spacecraft, including the LEM
configuration and the use of LEM equipment in accomplishing alternate
modes.

LAUNCH ESCAPE SUBSYSTEM

During the next reporting period, emphasis will be placed upon an
overall system apportionment and failure mode analysis for interaction of the
launch escape subsystem within the over-all Apollo vehicle. Emphasis will
be placed upon implementing the redirected system concept through

‘ employment of a pitch control motor for thrust vector control.

‘First development firings will begin and data will be utilized, wherever
applicable, for reliability evaluations.

Subcontractor monitoring will be amplified as the development program
is implemented. The liaison meetings will include design reviews and audits
of the reliability program.

FUEL CELL REAPPORTIONMENT

During the next reporting period a reapportionment of the fuel cell
module consistent with the reliability objective of 0.971 will be completed.
A more detailed failure mode analysis will be made utilizing early develop-
ment test data and more refined design details. Expansion of the
qualification-reliability test plan will be accomplished along with initiation of
development tests on fuel cell hardware. Emphasis will be placed upon
establishing a firm manufacturing technique for the production fuel cell
electrodes.

WEIGHT REDUCTION STUDIES

Reliability studies are underway in support of a weight reduction
. investigation being conducted by Apollo Engineering. Areas of investigation
Include the possible elimination of major redundancy, on-board spares,
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CONTIDENT-- ~

in-flight test provisions, controls and displays, and recovery back-up '
provisions. The ramifications of exclusions on reliability will be

quantitatively determined, as will compensating approaches such as parts
improvement programs, redundancy at the part level, decrease in stresses

through the use of higher derating factors, alternate modes employing other
subsystems, and simplification within various circuits and equipment.

RE-APPORTIONMENT OF RELIABILITY OBJECTIVES

As a result of configuration and lunar landing concept changes, the
original apportionment of NASA assigned reliability and crew survival
objectives is no longer valid. Studies are underway to re-apportion these
objectives, taking into consideration current concepts and configurations.

Reliability logic diagrams have been constructed for the various phases
of operation employing the LEM concept. Seven primary-mode and
abort-mode logic networks are currently defined. Similar re-apportionments
will be conducted employing the spacecraft for direct lunar landing.
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REFERENCES

Compilation of Component Field Reliability Data Useful in Systems
Reliability Design, WADD TR-60-330 (Secret).

Documentation Requirements for the Apollo Fuel Cell System,
SID 62-332,

Earles, D,R., Reliability Application and Analysis Guide, The Martin
Company, MI-60-54, Revision 1, July 1961,

Martin Handbook of Generic Failure Rates, The Martin Company.

NASA Project Apollo Spacecraft Development Statement of Work,
Part I1I, Revised.

NEL Reliability Design Handbook, Naval Electronics Laboratory, USN.

Pratt & Whitney Aircraft Service Records, Pratt & Whitney.

Preparation of Test Reports, Mil-T-9107.

Qualification Reliability Test Plan, SID 62-204.

Rome Air Development Center Reliability Notebook, Supplement 1.

Format for Test Procedure for Reproduction and Inspection for
Aircraft Electronic Equipment, Mil-T-18303,
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